

ON THE DYNAMICS OF A MATHEMATICAL MODEL OF VIRUS SPREADING INCORPORATING THE EFFECT OF A VACCINE BY GÖKÇE ET AL. (NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS 2024)

Urszula Foryś¹, Emanuela Pernitente²

¹Faculty of Mathematics, Informatics and Mechanics, University of Warsaw Banacha 2, 02-097 Warsaw,

²University of Naples Federico II,

I-80126 Naples, Italy,

¹urszula@mimuw.edu.pl, ²manu.pernitente@gmail.com

ABSTRACT

We study a model of virus spreading incorporating the effect of a vaccine proposed in [1] by Gökçe $et\ al.$ This model is based on a system of six differential equations describing the flow between five compartments in epidemic model with the influence of the vaccine. This influence is described by Hill function with coefficients n and κ .

In the original article [1] the authors focused on calculating \mathcal{R}_0 , the coefficient beeing a threshold for local stability of a disease free equilibrium (DFE), which strongly depends on the coefficient n, as well as a backward biffurcation for n=2.

In our analysis we used standard Routh-Hurwitz Criterion to prove the local stability of the DFE state for $\mathcal{R}_0 < 1$, and the global stability of this state under some more restrictive condition, based on Kamgang and Sallet approach [2]. We also attempted to estimate the number of positive steady states and study their stability for arbitrary n.

REFERENCES

- [1] A. Gökçe, B. Gürbüz, and A.D. Rendall: *Dynamics of a mathematical model of virus spreading incorporating the effect of a vaccine*, Nonlinear Analysis: Real World Applications **78** (2024), 104097.
- [2] J.C. Kamgang and G. Sallet: Computation of threshold conditions for epidemiologi- cal models and global stability of the disease-free equilibrium (dfe), Mathematical Biosciences 213 (2008), 1–12.