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ABSTRACT
The basic definitions of the wavelets theory are presented. Proposed is transformation which combines two
transformations: wavelet and Fourier. It is compared with the well known composition of Hilbert and Fourier
transformation. The properties of the new transformation and its exemplary application is presented.

INTRODUCTION
Wavelet methods [1] [2] have become well known and useful tool for various signal processing
applications. They allow to achieve the time-frequency analysis of functions or vectors represent-
ing the real-world signals. There are three types of wavelet tools discussed in the literature: the
continuous wavelet transform (CWT), the wavelet series (WS) and the discrete wavelet transform
(DWT). The construction of each of them is based on the existence of the pair of wavelet func-
tions, ϕ and ψ, which are linked together. The Norwegian Academy of Science and Letters has
decided to award the Abel Prize for 2017 to Yves Meyer "for his pivotal role in the development
of the mathematical theory of wavelets".

CWT and WS are defined for time domain signals based on L2(<) inner product, which could
be treated as the measurement of the similarities between signals and wavelet functions. WS
enables to represent (with high precision) each signal, s ∈ L2(<), as a sequence of real numbers.

In digital signal processing systems it is common practice that only sampled and approximate
values of signals are available. In such situations more appropriate approach than CWT or WS is
DWT which is adopted to sequences from l2(Z) space.

For WS and DWT approaches exist very efficient algorithm, known as the Mallat’s pyramid
algorithm [3], for finding series coefficients and discrete transform values. It gives the formula for
the coefficients from lower resolution levels of WS, based on the values from higher level. This
means that initial coefficients, for some high resolution level, need to be calculated first, i.e. the
initialization step has to be done. For DWT this preprocessing is often reduced to taking samples
of the discrete signal as the inner product values for the highest resolution level.

In this paper we focus our attention on the real valued functions from L2(<) and sequences
from l2(Z) space (which we call the analog and digital signals respectively).
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Engineers treat CWT as a supplementation of Fourier transform by considering kernels with
practically (not theoretically because of Heisenberg uncertainty principle) compact supports si-
multaneously in time and frequency domain. This leads to wavelet transform where two para-
metric kernels for a new domain are used allowing to localize given function both in time and
frequency domain.

Fourier transform is the most frequently used transformation in signal processing. The main
reason is the utility of frequency representation. It is also important that mathematical models in
the frequency domain are easier to use when comparing with models in the time domain. This
second feature is not attainable from wavelet methods. They were created in the late twentieth
century as an addition to a well known, since the first half of the nineteenth century, classical
global frequency analysis methods. Wavelet transform allows a local frequency analysis of sig-
nals. It enables to track how the frequency distribution changes over time. Short-Time Fourier
Transform (STFT) has similar applications and enable to analyze the successive parts of signal.
This historically older method has some disadvantages when compared with the wavelet methods.
The most important is the lack of automatic adjustment of the length of the analysis window to the
analyzed frequency.

CONTINUOUS WAVELET TRANSFORM
Wavelets provides a new type of function representation enabling local signal analysis. Wavelet
analysis uses two functions, which are inseparable pair. One of them, denoted by ϕ, represents
low frequencies. Its average value is different from zero. The second, denoted by ψ, represents
higher frequencies and its average value is equal to zero (see Fig.1).

Let us assume that some signal is represented by function s(t). To examine how the distribution
of frequencies changes in this signal, the wavelet transform

s̃ψ(a, b) =
1√
a

∫ ∞

−∞
s(t)ψ

(
t− b
a

)
dt (1)

can be used, where ψ is an arbitrarily selected wavelet function. Signal s is presented as a function
of time t and, after transformation, we obtain the function which has two arguments. Variable b is
the time in which surroundings the frequency properties of signal s(t) are examined locally. The
new variable, a, represents some frequency band and is proportional to the inverse of the center
frequency of ψ, for the given value a. This means that transform (1) shows how strong are the
frequencies surrounding the frequency proportional to 1/a in the analyzed signal locally around
time b.

WAVELET SERIES
The wavelet decomposition is an useful tool applicable in the signal analysis. For the assumed
resolution level m, the basis functions

ϕm,n(t) =
√

2mϕ(2mt− n) (2)

are created from function ϕ shifted in time t, where m and n are integer numbers. The wavelet
series have form

sm(t) =
∑

n

cm,nϕm,n(t), (3)

where coefficients

cm,n =

∫ ∞

−∞
sm(t)ϕm,n(t)dt, (4)

are inner products, since (2) functions constitute an orthonormal base.
Some wavelets have the compact supports in the frequency domain and then parameter m de-

termines the maximal frequency in signal sm(t). Engineers treat this observation as valid always,
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Figure 1. Meyer [2] scale function ϕ (left) and wavelet function ψ (right), below are
their amplitude and phase spectra

because even if the spectra are not compact, a far greater part of energy is concentrated in the finite
frequency band.

Each signal from the resolution level m can be decomposed into two signals, i.e.

sm(t) = sm−1(t) + wm−1(t). (5)

The first component sm−1 is treated as a coarse approximation of the signal sm from a higher
resolution level and may be represented by series

sm−1(t) =
∑

n

cm−1,nϕm−1,n(t). (6)

The second component contains a so-called the higher resolution details and can be represented
similarly, but by different base functions

wm−1(t) =
∑

n

dm−1,nψm−1,n(t). (7)

Vector cm = [cm,n]n is a complete representation of function sm(t) hence from (3)-(6) results
the vector cm−1 = [cm−1,n]n dependence from cm. The relationship between them has form

cm−1,n =
∑

k

hk−2ncm,k. (8)

Similar consideration leads to

dm−1,n =
∑

k

gk−2ncm,k. (9)

The values of coefficients hg and gk depend on assumed wavelet functions ϕ and ψ. Formulas (8)
and (9) form the so-called Mallat’s pyramid algorithm [3].
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DISCRETE WAVELET TRANSFORM
Function s(t) transformed by (1) is called an analog signal. Numerical calculations need its ap-
proximate values in evenly distributed moments of time [n∆t]n, thus we obtain vector [s(n∆t)]n,
called a digital signal. To compute the discrete wavelet transform, we should use some method for
numerical computing of integral (1). To provide quick numerical solution to this problem a very
simple method was introduced. It utilizes dependencies defined for wavelet series and has been
widely accepted. At the beginning the substitution

cm,n ⇐ sm(n∆t) (10)

is used, and then using (8) and (9) we obtain values of Discrete Wavelet Transform

DWT =
{
{dm−1,n}n , {dm−2,n}n , . . . , {dm−M,n}n , {cm−M,n}n

}
. (11)

WAVELET CRIME
The relationships (8) and (9) show the very efficient procedure for generating coefficients of DWT.
However, to start this algorithm one needs to determine the initial sequence [cm,n]n, for some
(sufficiently large) resolution level m. The problem is that coefficients (4) can not be precisely
calculated, since in practice we know the signal only in discrete time points. Common practice,
in such a situation, is to use sampled values (10) of signal as the initial coefficients in DWT. Such
approach is commonly used, despite the fact that it was charged by Strang and Nguyen to be a
"wavelet crime” [4]. Several alternative solutions to the problem have been proposed in the same
paper [4]. One of them is the approach based on the Nyquist-Shannon sampling theorem which
states that any band limited function can be perfectly reconstructed from a countable sequence of
samples, i.e.

s(t) =
∑

n∈Z
s(n∆t) · sinc

( πt
∆t
− πn

)
, (12)

for sufficiently small sampling rate ∆t. DWT can be then employed to reconstructed function
defined on some interval. This approach has been analyzed and tested by Abry and Flandrin [5]
and by Zhang et al. in [6].

Qian and Francis [7] have shown that starting directly from sampled values can lead to a large
error. They gave an optimal filter for initialization, however the sequence obtained as a result is
not easily realizable. There are several others papers dedicated to the initialization problem, such
as [8] and [9].

Committing the wavelet crime (as in this paper) may be justified, if the signal is regular enough.

Theorem 1 (Frazier, [10]). Lets suppose that:
(1) s(t) ∈ L2(<) and ϕ(t) ∈ L(<) ∩ L2(<),
(2)

∫∞
−∞ ϕ2(t) dt = 1,

(3) s(t) satisfy Lipschitz condition with constant L,
(4) C :=

∫∞
−∞ |tϕ(t)| dt <∞.

Then we have ∣∣ 〈s, ϕm,n〉 − sm(n∆t)
∣∣ ≤ C · L · 2− 3m

2 . (13)

Taking measurements of signal satisfying the assumption (1)–(4), we can compute the upper
estimation of error in a suitably small intervals of time, and we have therefore the guarantee to
obtain limited errors in the sequence of coefficients [cm,n]n.

FOURIER-WAVELET TRANSFORM
Combination of Fourier and Wavelet Transform (FWT) let us define in a following way

ˆ̃sψ(a, f) =
1√
a

∫ ∞

−∞

∫ ∞

−∞
s(t)ψ

(
t− b
a

)
dt e−2πjfbdb. (14)

152



Spectra of Wavelet Transforms

FWT allows to provide specific kind of signal analysis. Using elementary properties of both used
transformations, we can determine three properties of (14):

1) conservation of energy in such sense that
∫ ∞

−∞
s2(t)dt =

1

η

∫ ∞

−∞

∫ ∞

−∞
|ˆ̃sψ(a, f)|2 dadf

a2
where η =

∫ ∞

0

|ψ̂(f)|2
f

df <∞, (15)

2) for time-shifted signal s(t− τ) we obtain the FWT in form ˆ̃sψ(a, f)e−2πjτf ,
3) for the scaled signal s(γt) we obtain |γ|−3/2 ˆ̃sψ(aγ, f/γ).
Using the property that Fourier transformation preserves scalar products, equation (1) can be

transformed to
ˆ̃sψ(a, f) =

√
aψ̂∗(af) ŝ(f). (16)

This formula means filtering of signal s. The frequency characteristic of filter depends on function
conjugated to the wavelet spectrum ψ̂(af). Such characteristic has compact support (as for Meyer
wavelets) or clearly focuses over some range of frequencies. Scaling parameter, a, shifts the
spectrum and thus ˆ̃sψ(a, f) for assumed a is a modified portion of the signal spectrum ŝ(f).

The link between filtration and Hilbert transformation

š =
1

π

∫ ∞

−∞

s(t)

τ − tdt, (17)

is even more evident, because (17) has the form of convolution and thus Fourier transformation
gives form

ˆ̌s = −jsgn(f)ŝ(f). (18)
Filter for this case has amplitude characteristic

A(f) = 1, (19)

and phase characteristic

θ(f) =

{
0.5π for f < 0
−0.5π for f > 0,

(20)

what means that this is the all-pass filter.
The first step of numerical calculations is to determine the value (11) for the digital signal s.

Then, for the variable n, Fourier transformation should be used separately for each resolution level.
Applying the standard Fast Fourier Transform (FFT) software, we get finally Discrete Wavelet-
Fourier Transform

DFWT =
{{

d̂m,k

}
k
,
{
d̂m−1,k

}
k
, . . . ,

{
d̂m−M,k

}
k
, {ĉm−M,k}k

}
. (21)

WAVELET-FOURIER TRANSFORM
Because Fourier and wavelet transforms are not commuting operations, we obtain a separate
method of analysis by determining the wavelet transform for the signal spectrum. Discrete Wavelet-
Fourier Transform (DWFT) is therefore a two-step operation. First, for discrete signal, s ∈ <N ,
the discrete spectrum ŝ ∈ CN is determined using FFT. Then for this discrete spectrum DWT is
computed.

EXAMPLE AND CONCLUSIONS
Wavelet theory provides researchers and engineers with a powerful tool for time-frequency signal
analysis. Successful applications of the wavelet methods include biomedical signal analysis, im-
age and audio processing, technical measurement analysis and other time-series processing areas.
Proposed hybrid DFWT and DWFT are relatively new techniques. Further research should focus
on their features, and new application areas should be proposed for both of them.

This paper presented theoretical basics of the wavelet transform, and it’s corresponding dis-
crete version - namely discrete wavelet decomposition. The concept of the wavelet crime was
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Figure 2. Speech signal presented in various domains: time waveform (left-upper), DWT
(right-upper), amplitude of a DFWT (left-bottom), and amplitude of a DFWT (right-
bottom). Upper rows of each wavelet spectrum represent higher resolution levels.

introduced and discussed as well. Finally, hybrid Fourier-wavelet and wavelet-Fourier transforms
were defined in both continuous and discrete domains.

Exemplary plots of discrete transforms: wavelet, Fourier-wavelet and wavelet-Fourier for a
short speech signal are presented in Fig.2. The signal is an isolated phoneme /a/ produced by a
male speaker. A 5-level wavelet transform was computed using a Meyer decomposition filters.
One can observe that DFWT and DWFT produce entirely different results.

Frequency analysis is the most commonly used tool in a wide variety of signal processing ap-
plications. These methods include not only the Fourier transform but also: cosine transformation,
mel-frequency cepstral coefficients, as well as the mentioned above STFT, CWT, DWT. It can be
expected that the proposed DFWT and DWFT transformations will also become useful tools. The
authors examine their capabilities in speech technology, i.e. speech recognition [11] and [12].
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