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ABSTRACT
In this work, we propose a population model to characterize the binary decision making as an outcome of
a winner-take-all competition between two neuronal populations communicating through plastic synapses.
In particular, we study the impact of the inputs stimulating the neuronal populations on the time-course
and efficiency of the decision making process. Furthermore, we demonstrate that background input and
anatomical strength of connections can induce distinct, context dependent modes of activity. We obtain
a range of results that may provide with new insights into the neuronal mechanisms of decisions and actions.

INTRODUCTION
Decision making – from simple perceptual choices such as the Necker cube phenomenon [1] to
complex choices such as choosing the best vacation destination – is one of the basic functionalities
of the human brain. While making a decision, one needs to evaluate the options, and withdraw all
but one of them. This evaluation process can be time- and energy-costly to the brain [2], and has
at least two tangential aspects. Firstly, decision making requires evaluating utility of the alterna-
tives (for instance, choosing between an apple and an orange on the basis of factors such as their
taste, smell, nutritious value, appearance, price etc.). Secondly, in more basic, perceptual decision
making, a subject needs to disambiguate the sensory stimuli, which are often noisy. In laboratory
conditions, this phenomenon is investigated with the use of two-alternative forced choice exper-
iments. In a famous example, Michael Shadlen trained rhesus monkeys to distinguish between
the dots moving on the screen towards either right or left direction [4]. This experiment was then
modeled by Wang et al. [3] by a spiking neuronal network model with a slow reverberation mech-
anism. Wang’s model is an example of a winner-take-all mechanism, which is a first line of choice
to model sensory decision making in the cortical networks.

Our model also represents the winner-take-all family of models. Unlike Wang, we do not
simulate stochastic spiking neuronal networks in our study though, but we represent the competing
populations as a neuronal mass model and take an analytic approach instead.
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MODEL DESCRIPTION
In our model, we consider two populations of neurons (1 and 2, Fig. 1). Neurons from the first
population affect neurons of the second population with a synaptic weight w1(t), whereas neurons
belonging to the second population interact with neurons in the first population with a synaptic
weight w2(t). Synaptic weights w1(t) and w2(t) (0 < w1 < 1, 0 < w2 < 1) indicate the strength
of the connections between two nodes that, from the biological standpoint, correspond to the influ-
ence the firing of the neuron from the first cluster has on the neuron from the second one. Due to
the presence of plasticity at the synapses, the values of synaptic weights can vary over time. In the
winner-takes-all model, the two neuronal populations constantly compete: one of them can gain in
the firing rate on the cost of the other (depicted by r1(t) and r2(t)). In general, the two competing
neuronal populations are not an isolated system and are embedded in a bigger cortical network.
Therefore, one can assume that stimuli represent the background activity within the system and
are higher than zero even in the absence of the experiment-related stimulus. Therefore, both pop-
ulations receive a constant external input I , representing the background neuronal activity. In
addition to that, population 1 receives an input σ relating to the sensory stimulus.

The network is then supposed to make a decision, i.e., to correctly decode which population
received the stimulus σ. The decision rule in this model is very simple, as this is a winner-take-all
mechanism: if r1(t) > r2(t), the network chooses the population 1 as the origin of the stimulus,
and if r2(t) > r1(t), the network chooses the population 2. If r1(t) = r2(t), we interpret this as
a lack of decision.

Figure 1. A simple neural-mass neuronal model of a decision making network. Neurons
in the first population project to neurons in the second population with synaptic weight
w1(t), while neurons in the second population project to neurons in the first population
with a synaptic weight w2(t). The firing rates in the populations are denoted by r1(t)
and r2(t). The two neuronal populations constantly compete: one of them can gain in
firing rate on the cost of the other. Both populations receive a constant, external input I
which relates to a background activity in cortical networks. In addition to this, population
1 receives an external stimulus σ, representing a sensory input.

The dynamics in this network can be characterized by a bilinear population model:
{
τr ṙ1(t) = −r1(t) + w2(t)r2(t) + I + σ,

τr ṙ2(t) = −r2(t) + w1(t)r1(t) + I,
(1)

where I denotes the background activity in the neuronal populations ([1/s]), σ denotes the sensory
stimulus, and τr is the time scale of the firing rates ([s]). In the model, we also have a self-inhibition
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(a) (b)

Figure 2. Existence of steady states: (a) with respect to the value of the parameter I
when ε = 1; (b) with respect to the value of the parameter ε when I = 0.4.

term −r(t) that represents local inhibition within the competing populations. Such a relaxation
term is often used in modeling neuronal activity in interacting populations, i.e., see Dynamic
Causal Modeling [5, 6].

The expression w2(t)r2(t) in the first equation reflects the positive effect of the second neu-
ronal population on the neurons from the first cluster with connection strength w2, analogous to
w1(t)r1(t) in the second equation.

The short term plasticity in this system (STP, [7]) yields as follows:
{
τwẇ1(t) = −w1(t) + εf(r1(t)r2(t)),
τwẇ2(t) = −w2(t) + εf(r1(t)r2(t)),

(2)

where f(x) = x2

1+x2 denotes a sigmoidal transfer function, τw is the time-scale of synaptic
weights, and τw � τr. In our model, parameter ε refers to the anatomical maximum connec-
tion capacity, which can then be modulated by STP.

BASIC PROPERTIES OF THE MODEL AND NUMERICAL EXPERIMENTS
First, we analyze the model for the basic, symmetric case when there is no sensory stimulus
(σ = 0). The solutions exist and are unique as the right-hand sides of Eqs. (1)-(2) are of class
C1. Moreover, the right-hand sides fulfill the Lipschitz condition, therefore the solutions are
extendable for all t > 0.

Existence of steady states
Steady states of Eqs. (1)-(2) for σ = 0 satisfy the following relations:





r1(t) = w2(t)r2(t) + I,

r2(t) = w1(t)r1(t) + I,

w1(t) = ε
(r1(t))

2(r2(t))
2

1 + (r1(t))2(r2(t))2
,

w2(t) = ε
(r1(t))

2(r2(t))
2

1 + (r1(t))2(r2(t))
2 .

(3)

From the symmetry of the system, w1 = w2 = w, which yields
{
r1(t) = w(t)r2(t) + I,

r2(t) = w(t)r1(t) + I.
(4)
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(a) (b)

Figure 3. The influence of the stimulus on the decision making performance in the sys-
tem. (a) The behavior of the system when the first and the second group of neurons are
given the same input (σ = 0). In this case the decision is random (after sufficiently long
period of time r1 = r2). (b) On the contrary, when the first cluster is more agitated
(σ > 0), the network undertakes the first decision – the stable point (r1,r2) fulfills the
condition r1 > r2.

Subsequently, assuming that synaptic weights are always positive (w > 0), we obtain w = ε r4

1+r4 .
Hence, the coordinates of a steady state satisfy the relation

I = r − ε r5

1 + r4
, r > 0, I > 0. (5)

If ε = 1, this expression reduces to I = r
1+r4 .

Corollary 1. If ε = 1, then there are: 2 steady states if I < 30.75

4 , 1 steady state if I = 30.75

4 , no
steady states if I > 30.75

4 .

The graphical representation of Corollary 1 is presented in Fig. 2.
Let us now assume that I = 0.4 (so that we have two steady states). Then, ε = 1 +

−0.4r4+r−0.4
r5 .

Corollary 2. If I = 0.4, there are: 3 steady states when ε ∈ (0.8498, 1), 2 steady states when
ε ∈ {0.8498} ∪ [1, 3.4051), 1 steady state when ε ∈ (0, 0.8498) ∪ {3.4051}, no steady states
when ε > 3.4051.

Stability of the steady states
In this section, we focus on the stability analysis of these steady states. For this purpose, we choose
a specific parameter set. However, the magnitude of the parameter ε has a significant impact on
the dynamics of model as well as on the decision making performance in the system. In Fig. 4
we present the phase portraits for the symmetric case (with σ = 0) and varying values of ε, and
present all four cases listed in Corollary 2.

Let us now fix I = 0.4, ε = 1 and τr = 1
3 . Then, the coordinates r∗1 = r∗2 = r∗ of the

two steady states take the approximate values [r∗1 , r
∗
2 ] = r∗a = 0.4114655 and [r∗1 , r

∗
2 ] = r∗b =

1.1827404.
The Jacobian matrix J of Eqs. (1)-(2) takes the following form:

J =




− 1
τr

1
τr
w2 0 1

τr
r2

1
τr
w1 − 1

τr
1
τr
r1 0

1
τw
Ar2

1
τw
Ar1 − 1

τw
0

1
τw
Ar2

1
τw
Ar1 0 − 1

τw


 , A =

2r1r2
(1 + (r1r2)2)2

. (6)
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(a) (b)

(c) (d)

Figure 4. The influence of the magnitude of the parameter ε on the decision making
performance in the system. Phase portraits for: (a) ε = 4 with no steady states, (b)
ε = 0.2 with one stable steady state, (c) ε = 1 with two steady states, one of them stable,
(d) ε = 0.9 with three steady states, two of them stable. The initial points (r1,r2) for
which the solutions converge to infinity are irrelevant for us, because the model has a
biological sense only for limited values of firing rates. The simulations were performed
in MATLAB, thanks to the courtesy of NSG gateway [9].

Due to the fact that τw � τr, we choose τw = 0.01τr. Now, from the symmetry r1 = r2 = r,
w1 = w2 = w, yielding

det(J − λI) = det




− 1
τr
− λ 1

τr
w 0 1

τr
r

1
τr
w − 1

τr
− λ 1

τr
r 0

100
τr
Ar 100

τr
Ar − 100

τr
− λ 0

100
τr
Ar 100

τr
Ar 0 − 100

τr
− λ


 =

=

(
λ+

100

τr

)(
λ+

1

τr
w +

1

τr

)((
λ+

100

τr

)(
λ− 1

τr
w +

1

τr

)
− 200

τr2
Ar2

)
(7)
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The roots of Polynomial (7) satisfy:

λ1 = −100

τr
< 0,

λ2 = − 1

τr
(w + 1) < 0,

λ3 =
1

2τr
((w − 101)− ((w − 101)2 + 400(w − 1 + 2Ar2))0.5) < 0,

λ4 =
1

2τr
((w − 101) + ((w − 101)2 + 400(w − 1 + 2Ar2))0.5).

Taking into account the assumptions made at the beginning, substituting each of the previously
received steady states, we obtain that the steady state r∗a is stable (λ4 < 0) and r∗b is unstable
(λ4 > 0).

Note that when the system is symmetric (σ = 0), than in the steady state, r∗1 = r∗2 (Fig. 3(a)),
therefore according to our decision rule, the network cannot take a decision. Otherwise, if σ > 0,
then the stable point [r∗1 , r

∗
2 ] fulfills the condition r∗1 > r∗2 (Fig. 3(b)), and therefore the correct

decision is made.

DISCUSSION
In this paper, we propose a population model of decision making based on a winner-take-all mech-
anism. In this simple model, the network needs to make a binary choice between the two options.
With this model, we study the influence of a magnitude of the sensory stimulus (represented here
by σ) on making perceptual choices. As mentioned before, the number of steady states and there-
fore the behavior of the system depends also on the value of the parameter relating to the strength
of the anatomical fibres linking the populations limiting the maximal connection capacity, ε. The
model has a biological sense only if it is possible to reach a stable attractor from its initial state, i.e.
if the firing rates are from the beginning in the basins of attraction of stable steady points, as shown
for example in the Fig. 3. This decision-making model is currently being extended by a delay pa-
rameter exhibits a rich dynamic repertoire [8]. In this paper, we demonstrate that large delays in
the local inhibition can lead to the subcritical Hopf bifurcation resulting in complex impairments
in the decision making process. We also demonstrate that above the Hopf bifurcation point, in-
creasing the strength of the stimulus may lead to the change in the final decision into a wrong one.
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