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ABSTRACT  

  

Imaging mass spectrometry technique enables the combination of mass spectrometry measurements with 

spatial information on the tissue to be examined. This allows for the association of the molecular profile of 

the tissue with its morphological image. The technique is used to characterize the proteomic profiles of tissues, 

compare between different types of tissues (e.g., tumor tissue and normal tissue), and to study tissue structure. 

Due to the high complexity of the measured signals it is necessary to find only the most representative spectral 

features (proteins or peptides), that could be good candidates for biomarkers, by examination of the spatial 

structure of the individual features. In this work an algorithm for efficient selection of only the most important 

spatially structured features is proposed. The algorithm is based on mixture modeling of mass spectrometry 

signal to define spectral features, application of two methods for ranking spectral features by their level of 

spatial structure and integration of the results obtained with these two methods. By analysis of biological 

tissue sample from patient with oral squamous cell carcinoma, it was proved that reduction of mass 

spectrometry signal to only important spectral features and integrating information from two spatial structure 

measures can enhance the potential for finding protein biomarkers by imaging mass spectrometry.  

  

INTRODUCTION  

  

Nowadays, we are looking for better solutions for the rapid diagnosis of diseases, especially cancer, 

where the time of detection and treatment is the most important issue [1]. Imaging Mass 

Spectrometry (IMS) based on matrix assisted desorption ionization (MALDI) technique allows the 

analysis of proteins from intact tissues, through visualization of their significant amounts  in some 

regions. The tissue under investigation is divided into equally sized sections by the chessboard 

pattern and for each section the protein composition is obtained and stored as a single mass 

spectrum (Figure 1)[2]. Two-dimensional ion intensity maps can be created by plotting the 

intensities of a protein with given mass obtained as a function of its coordinates. The resulting 

images allow comparison of molecular distributions between different regions of the sample as 

well as between the samples [3]. Most importantly, resulting molecular images could be 

overlapped with morphological structures, allowing correlation between tissue structures and 

molecular features. The availability of tumor tissue samples that could be analyzed by IMS 

  



(biopsies, resected tumors and xenograft models) increases the practicability of this approach in 

cancer medicine.  It has potential to identify novel proteins, that were not obvious disease-specific 

molecules, but are involved in development of disease and interactions between surrounding tissue. 

The protein domain is directly affected in disease state, so proteomics holds special promise for 

biomarker discovery and MALDI-IMS isone of most promising approaches [4]. Protein 

biomarkers can be used clinically for screening, diagnosis or monitoring the activity of disease.  

In a single spectrum composed of even hundreds of thousands of measurement points the most 

important elements are spectral signal peaks. It is assumed that each peak corresponds to a certain 

protein/peptide present in the analyzed samples. In high-resolution real data the shape of a single 

peak is right-skewed, so standard procedures for peak detection and quantification may not be 

accurate. In this work an efficient approach to computational processing of proteomic mass spectra 

is used [5]. The algorithm is based on modeling spectra by a mixture of Gaussian distribution 

functions and quantifying each peak to define spectral features (peaks) by a sum of the area under 

model components. Next, using the different measures for spatial structure on ion intensity maps, 

spectral features are graded. At last features are categorized by their importance and by integrating 

the results of clustering the most important sub-group of spectral features is selected.  

  

Figure 1. Diagram of collection and analysis of imaging mass spectrometry data for selection of 

spatially structured peaks.  

  

MATERIAL AND METHODS  

  

The tissue sample from a patient who underwent surgery because of oral squamous cell carcinoma 

was analyzed (Preparation_1 from [6]). The sample taken from fresh postoperative material was 

annotated by an experienced pathologist. Five tissue regions were distinguished: tumor area, 

normal epithelium, muscle, salivary gland and other structures. Mass spectra were recorded with 

the use of MALDI-TOF ultrafleXtreme mass spectrometer within M/Z range of 800-4000 Da.  

The diagram of imaging mass spectrometry data analysis is presented on Figure 1. The raw 

spectra were resampled to a common M/Z space of 109 568 points, preserving their original 

distribution. For the set of all mass spectra the following pre-processing steps were performed:  
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baseline correction by estimating baseline within multiple shifted windows and spline 

approximation,  spectral alignment with use of modified PAFFT algorithm and Total Ion Current 

normalization [7]. For all M/Z points intensity values across all spectra were averaged, creating 

mean spectrum, which was partitioned using the idea of “splitters” [5]. Particularly, each spectrum 

fragment was decomposed by using Gaussian mixture modeling and individual decompositions 

were aggregated to form the final mixture model. Too wide or too low components were filtered 

out [7]. In the last step, close components were merged to define the spectral features. The 

abundance of the spectral features was calculated as a sum of the area under the model components 

that belong to the particular spectral feature.  

Currently, in literature there are two methods to measure spatial structure of ion intensity maps 

defined for spectral features, that was introduced for IMS data analysis. The first method is called 

spatial chaos (SC). Spatial chaos is defined as a lack of spatial pattern in the pixels intensities [8]. 

For each spectral feature the ion intensity map is created and a two-step edge detection filter for 

noisy images is applied to detect signal intensity edges. Next, a one-nearest neighbor graph on 

edge pixels is build. The measure of chaos is calculated on mean length of the graph edges. The 

value of the spatial chaos is low for an image exhibiting spatially structured intensity pattern and 

it is high for an image with spatially chaotic pixels intensities. Second method for identifying 

spectral features with structured spatial distributions was introduced as a part of data analysis 

pipeline for MALDIIMS data [9] called EXIMS. For each spectral feature the ion intensity map is 

created and preprocessed by median filtering and histogram equalization. The spatial structure is 

captured by calculating improved version of Gray level Co-Occurrence (GCO) matrix. The final 

measure constructed on selected values from GCO matrix  should be high for structured images of 

spectral features and low for unstructured images. To provide only the most important spectral 

features kmeans algorithm was performed on values given by two spatial structure measures 

separately. The Box-Cox transformation to normality was made before clustering. The optimal 

number of clusters k was found using Dunn index.  

With Anderson-Darling test non-normal data distributions were found for most spectral 

features. Due to non-normal data distributions the abundance of spectral features between regions 

defined by an experienced pathologist was compared using Kruskal-Wallis (KW) test with 

Nemenyi post-hoc procedure. Higher value of KW statistic brings higher statistical significance of 

given feature. The strength of dependence between variables was measured using Spearman rank 

correlation coefficient. In all tests the significance level was set to 0.05.  

  

RESULTS AND DISCUSSION  

  

MALDI-IMS analysis of one tissue sample gave measurements for 9 495 tissue sections, where 

each of them is represented by a single mass spectrum. First, the image sections located outside 

the tissue sample were neglected. The remaining 7676 spectra were assigned to 5 regions defined 

by pathologist, namely: tumor area (846 spectra), normal epithelium (359 spectra), muscle (1910 

spectra), salivary gland (1145 spectra) and other structures (3416 spectra). By averaging the signal 

intensities over all spectra, mean spectrum was created. Constructed mixture model of mean 

spectrum consists of 6854 components with defined location, spread and weight parameters. 304 

high variance and 73 low intensity Gaussian components were removed. Due to right-skewed 

shape of peaks most of them are modeled by two or more Gaussian components. By merging 

components close to each other (by investigating their location parameter), 3624 spectral features 

were defined. Each spectral feature correspond to protein or peptide present in the analyzed tissue. 

The abundance of each spectral feature was calculated by summing the area under the components 

associated with given spectral feature in each spectrum.   

To grade the spatial structure of each spectral feature two measures were calculated: EXIMS 

and SC. EXIMS is based on non-parametric statistical measures, thus it is robust to diverse 

Spatial feature selection for finding biomarkers using imaging mass spectrometry data 125



distribution of intensities in analyzed ion intensity maps. SC algorithm gave different values for 

the spectral features abundance and the logarithmic transform of abundance, that was performed 

to reduce the skewness. In further text SC represents Spatial Chaos measure on spectral abundance 

in original scale and SC log represents Spatial Chaos measure on spectral abundance after 

logarithmic transformation. Furthermore, for 123 spectral components the value of Spatial Chaos 

could not be calculated by the software given from the authors, and they were neglected in all 

comparisons. The basic idea for introducing SC and EXIMS methods was the same: grade the 

spatial structure of the ion intensity map given by some spectral feature. However, the values 

obtained by using both methods are not highly correlated (correlation between SC and EXIMS 

equals to -0.21 and between SC log and EXIMS equals to -0.34). So, these two methods grade the 

spatial structure of given spectral feature in a different way. For each method the correlation 

between calculated measure of spatial structure and KW test statistic (that measures differences in 

abundance between tissue regions defined by pathologist) was calculated (Table 1). The highest 

correlation is observed for EXIMS measure, which suggest that it is the best method for finding 

spectral features with different abundance between tissue regions. The value of correlation 

coefficient for SC and SC log was about 3 times smaller than for EXIMS.        

Table 1. Spearman rank correlation between spatial structure measures and Kruskal-Wallis 

(KW) test statistic.  

Measure  SC  SC log  EXIMS  

KW statistic  -0.22  -0.18  0.66  

  

The goal of protein biomarker discovery is to find only the most important spectral features 

from the group of all features defined. Thus, k-means algorithm was made on values given from 

spatial structure measures separately to find the optimal cut-off value . In each case, by using Dunn 

index, three clusters were identified (Fig. 2). For EXIMS method the spectral features with the 

spatial structure measure higher than 1.903 (the cluster with the highest values of the EXIMS 

measure) were selected (863 spectral features). For SC methods the spectral features corresponding 

to the cluster with the lowest values of the SC measure were selected. The obtained thresholds 

were equal to 0.00158 for SC (341 spectral features) and 0.00071 for SC log (825 spectral features).  

 

Figure 2. Distribution of different spatial structure measures. Dotted vertical lines 

represent thresholds found by k-means clustering.  

 
Two measures of spatial structure give diverse classification of spectral features. It can be seen 

by visual inspection of scatter plots presented in Fig. 3. In this work it is proposed to integrate the 

results of EXIMS and SC by selecting the spectral features that are classified as the most important 

features for both methods. Particularly, SC+EXIMS corresponds to spectral features selected by 

EXIMS and SC methods (131 spectral features) and SC log+EXIMS corresponds to spectral 
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features selected by EXIMS and SC log methods (358 spectral features). Visually, the spectral 

features presented in the upper-left corner of images presented in Fig. 3 are selected.  

  

Figure 3. Association between Spatial Chaos (SC and SC log) and EXIMS  measures. 

Dotted vertical and horizontal lines represent thresholds found by  k-means clustering to 

distinguish only the most important features.  

 

The statistical significance of spectral features selected by any method may be compared by 

presenting the distribution of Kruskal-Wallis test statistic among methods (Fig. 4). Also, the 

statistical difference between methods was obtained using again Kruskal-Walis test with Nemenyi 

post-hoc analysis. When all 3624 spectral features are taken into account, the median value of KW 

statistic is the lowest. Selecting only important spectral features gives increase in the median value 

of KW statistic and decrease in its range. The differences between the cases with and without 

feature selection are statistically significant. In average, EXIMS method gives more important 

features than SC and SC log. When we combine the results of EXIMS and SC, the increase in 

median KW statistic is even higher in comparison to other methods. No statistical difference was 

observed between SC+EXIMS and SC log+EXIMS methods.  

  

Figure 4. Comparison of Kruskal-Wallis test statistic between methods. All – all spectra 

features, SC,SC log and EXIMS – spectra features defined by given measure and k-means based 

thresholding, SC+EXIMS, SC log+EXIMS – spectral features defined by results integration. 

  

In Fig. 5 some examples of ion intensity maps for spectral features selected by different 

methods are presented. The annotation for tissue regions made by pathologist is showed on the 

right side of Fig. 5. The selected spectral features corresponding to SC+EXIMS method, EXIMS 

only, SC only and other group was presented in a, b, c and d sub-images, respectively. These 4 

spectral features were selected to visualize the general conclusions made on the analysis performed 

on all features associated with given methods. Spectral feature selected by integration of SC and 

EXIMS results shows high difference in abundance between epithelium plus cancer region and 
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other regions. In this group there are features that are visually the most similar to annotation made 

by pathologist, however there are only few features with abundance specific to given region. These 

results are similar to the one obtained in [6]. Spectral feature selected only by EXIMS method 

shows higher abundance in cancer region, with possible recurrence sites to other sections of 

analyzed tissue. In general, EXIMS gives wider regions with comparable spatial structure. In our 

analysis, SC method tends to select spectral features with smaller structured regions than EXIMS 

method. When no selection of most important features was made (Fig. 5 d), no spatial structure 

can be observed.  

  

CONCLUSIONS  

  

Imaging mass spectrometry is a powerful measurement technique that can be used to discover 

novel potential biomarkers. However, due to the high number of obtained spectra with noisy signal 

two important steps are required: (i) reduction of spectral signal to peaks, which was done using 

Gaussian mixture model based method, (ii) selecting group of only the most important spectral 

features, which was done by integrating the results from SC and EXIMS method. By analysis of 

real, biological sample tissue it was proven that proposed algorithm gives much better results than 

the existing methods performed separately and when no selection is performed. It is planned to 

improve the results of SC method by its modification and analyze the results of applying different 

clustering techniques. Also, the conclusions made based on the analysis of tissue from one patient 

must be verified using other tissue samples (only preliminary analysis was made).     

  

Figure 5. Examples of ion intensity maps for spectral features selected by the following methods: 

a – SC + EXIMS, b – EXIMS only, c – SC only, d – other features. On the right side there is a 

pseudo colored image of tissue annotation by an experienced pathologist. 
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