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ABSTRACT
Parameters of a linear classification function may be found using several existing methods. One of the most
effective is a support vector machines (SVM) technique with linear kernel. Unfortunately, this method has
some drawbacks. It is relatively computationally intensive because it solves quadratic programming (QP)
problem and requires the value of regularisation parameter from the user. In this article we propose a new
method, which is similar in spirit to the SVM technique, but is free of mentioned disadvantages. In particular
it requires solving linear programming (LP) problems instead of QP problems and it does not require the
regularisation parameter, even for linearly non-separable datasets. Numerical examples confirm usefulness
and efficiency of the proposed method.

INTRODUCTION
Linear classification is the most popular method of classification. Despite the fact that it is rel-
atively simple, in many practical situations, for real datasets, it turns out to be better than other,
more complicated approaches. Parameters of linear classifier can be found/tuned using many ex-
isting methods having statistical or heuristic background. Among others it is worth to mention:
Fisher linear discriminant analysis (LDA), perceptron algorithm, linear regression, support vector
machines (SVM) with linear kernel and logistic regression. The latter gives in fact a non-linear
classification function, but divide the feature space linearly by hyperplane. Most methods require
from the user values of some additional parameters, the methods differ in computational effort
and, of course, in accuracy, when they are trained with particular learning datasets. In practice one
of the best is linear SVM, but it is computationally intensive and require from the user the regu-
larisation term. We propose in this article a method that is similar to SVM, but in some respects
it has some new and unique properties. We start the next section with recalling the basic idea of
SVM classification.

LINEAR SVM — A LINEARLY SEPARABLE CASE
Let us consider the set of M vectors {xi}Mi=1, xi ∈ Rn. Each vector represents one and only one
class A or B. In standard linear classification problem we are looking for a weight vector w and
scalar bias b of a linear classifying (discriminant) function

f(x) = wTx+ b (1)
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Figure 1. Linear SVM idea explanation; a) a non-optimal hyperplane P , b) the optimal
SVM hyperplane P o with maximised margin of separation γ, c) linearly non-separable
case

which satisfies the following set of inequalities

wTxi + b > 0 for xi ∈ A
wTxi + b < 0 for xi ∈ B (2)

for i = 1, 2, . . . ,M .
When the training set is linearly separable then there exist such a function.
For the simplicity of notation let us introduce a set of labels (desired responses or target out-

puts): {di}Mi=1 defined based on class membership:

di =

{
+1 when x1 ∈ A
−1 when x1 ∈ B (3)

Using labels the set of inequalities (2) can be rewritten

di(w
Txi + b > 0) > 0 i = 1, 2, . . . ,M (4)

Discriminant function (1) determines in the n-dimensional input space, a n − 1-dimensional
hyperplane P called the decision surface, for which the discriminant function is equal to zero:

P = {x : wTx+ b = 0} (5)

An example of such hyperplane is shown in Fig. 1a. For the sake of simplicity and clarity of
explanation subsets A and B are presented rather as regions instead of a sets of points xi.

Let us introduce γ quantity, called margin of separation, which is defined as Euclidean distance
ρ between hyperplane P and the closest training vector

γ = min
i
ρ(P, xi), i = 1, 2, . . . ,M (6)

The margin of separation γ is also presented in Fig. 1a.
Now, the basic linear SVM problem for linearly separable case can be formulated as follows:

Problem 1. Find optimal wo and bo that maximise γ subject to constraints (2)

Results of such maximisation is presented in Fig. 1b. The optimal hyperplane P o corresponds
to maximal value of margin of separation γmax.

It can be shown that Problem 1 can be transformed into quadratic programming (QP) problem
[1]. For more details we refer the reader to the article [1] or books [3, 4].

Unfortunately, such elegant and simple explanation exists only for linearly separable case. In
case of linearly non-separable case, presented in Fig. 1c, Problem 1 and corresponding QP prob-
lem have no solutions. To make the problem numerically tractable the QP problem is modified by
introducing slack variables leading to the concept of soft margin which is controlled by a regular-
isation term C, a parameter that must be specified by the user.
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Figure 2. Scaling training sets to obtain marginally separable sets: a) expanding linearly
separable set: β > 1, b) shrinking linearly non-separable sets: β < 0.

SCALING OF THE TRAINING SET
To avoid the fundamental qualitative difference between a separable and non-separable training
sets in this work a scaling operation is introduced and utilised.

Let xC be a centroid of all training vectors belonging to class (subset of points)C. The result of
scaling of any point xi ∈ C around the centroid xC with the scaling factor β is defined as follows:

S(xi, xC , β) = βxi + (1− β)xC (7)

For β > 1 the set C is growing (around xC), for β < 1 the set C shrinks (towards xC), and for
β = 1 the set C stays unchanged.

The whole two-class training set {A ∪ B} after scaling operation by factor β becomes a new
set {S(A, xA, β) ∪ S(B, xB , β)}.

Two linearly non-separable sets A and B with different centroids xA and xB can be always
shrinked (β < 1) such that they become linearly separable. And vice versa. Two linearly sep-
arable sets A and B can always be enlarged (β > 1) to obtain two linearly non-separable sets.
Consequently, we can always achieve a boundary marginally separable positions of two sets. We
call two sets A and B marginally linearly separable when they are linearly non-separable but there
exists a linear function (1) satisfying a set of inequalities

di(w
Txi + b > 0) ≥ 0 i = 1, 2, . . . ,M (8)

Both cases: expanding and shrinking are presented graphically in Fig. 2.

THE PRIMARY PROBLEM
Now, let us state the following problem which can be formulated for any, linearly separable or
linearly non-separable, training sets.

Problem 2. For given training set {A ∪ B} find the value of the scaling factor β0 for which the
scaled set {S(A, xA, β) ∪ S(B, xB , β)} is marginally linearly separable.

Note that the philosophy of Problem 2 is fundamentally different from all existing classification
methods. While existing methods tries to find, or manipulate, the classification function with
unchanged training set, the proposed approach tries to manipulate the training set in order to
obtain one specific i.e. marginally separating classification function.

The final linear classification function is then a function (1) that marginally separate the training
set scaled by β0 factor. The working name for our approach is zero margin (ZM) classifier.

From numerical point of view Problem 2 is not an easy task. Of course one can propose an
iterative algorithm for searching optimal β by sequential solving standard (hard margin) linear
SVM problems. Such an approach should work but would not be elegant (from mathematical
point of view) and would be very computationally intensive. Instead of this we propose to refor-
mulate Problem 2 into slightly simpler form, which can be transformed to linear programming
(LP) problem. It will be the topic of the next section.
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Figure 3. Illustration of the equivalence of Problem 3 to LP problem.

THE SIMPLIFIED PROBLEM AND ITS SOLUTION
Instead of solving Problem 2 we formulate two simpler problems, one for one class:

Problem 3. For given set A and the centroid xB find the value of the scaling factor βA for which
the scaled set {S(A, xA, β) ∪ xB} is marginally linearly separable.

Problem 4. For given set B and the centroid xA find the value of the scaling factor βB for which
the scaled set {S(B, xB , β) ∪ xA} is marginally linearly separable.

Let us assume that first MA vectors belongs to class A. The convex hull of the set A is denoted
as HA and is presented in Fig. 3. Problem 3 corresponds to the problem of finding the point xp.
On the one hand, xp belongs to HA:

xp =

MA∑

i=1

αixi (9)

MA∑

i=1

αi = 1 (10)

αi ≥ 0; i = 1, 2, . . . ,MA (11)

On the other hand, xp belongs to the line passing through points xA and xB :

xp = α0xA + (1− α0)xB ; α0 ∈ R (12)

Combining (9) and (12) we obtain

α0xA + (1− α0)xB =

MA∑

i=1

αixi (13)

In addition, xp is the closest point to xB satisfying (9) and (12), so it can be found by minimising
α0. Therefore xp can be found by solving the following LP problem.

Problem 5. Find α0, α1, . . . αMA
minimising the objective function J = α0 subject to constraints

(10), (11) and (13).

After solving Problem 5, n of MA coefficients αi are non-zero (positive). Let us denote by ΩA
the set on these n coefficients. They indicate support vectors indicated in Fig. 3 as xi and xj .
Now, let us calculate a first classification function fA(x) = wA

Tx + bA by solving n + 1 linear
equations:

wA
Txi + bA = 0; i ∈ ΩA (14)

wA
TxA + bA = 1; (15)

A symmetric function fB(x) = wB
Tx + bB is found by solving a problem analogous to

Problem 5 and equations analogous to (14) and (15).
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The final linear classification function separatingA fromB is calculated as a difference of these
two functions

f(x) = fA(x)− fB(x) = (wA − wB)Tx+ (bA − bB) (16)
A further modification

We noted that the classification function (16) gives satisfactory accuracy but it is possible to get
even better classification quality by sequentially finding fA(x) and fB(x) and removing vectors
with indices i ∈ {ΩA ∪ ΩB} until some percent η of all vectors from the training set is removed.
Then, the final classification function is a mean of functions (16) obtained during all such itera-
tions.

NUMERICAL EXAMPLES
We did simulations on three datasets, one artificial and two real problems.

An artificial data set consists of 200 samples (100 samples per class) and 2 features drawn from
Gaussian distribution. Parameters of the distribution for the first feature are µ11 = 1, σ11 = 1.5
for the first class and µ12 = 4, σ12 = 1.5 for the second class. Parameters of the distribution for
the second feature is µ21 = 1, σ21 = 3.7 for the first class and µ22 = 4, σ22 = 1.5 for the second
class.

The first real data set is the benchmark problem for Wisconsin Breast Cancer Data classifi-
cation. The data consists of 9 medical attributes (10 attributes in total, but the last one is the id
number) and 699 instances including missing values. The aim of the problem is to decide whether
the cancer is malignant or benign. After excluding the instances with missing values, 683 instances
left in data set.

The second data set is set of diagnostic measurements of female patients of Pima Indian her-
itage. The objective is to predict whether a patient has diabetes. Originally dataset consist of 9
attributes and 768 observations. After excluding the instances with missing values, 392 instances
left in data set. Both data sets are available in [7], but we used its adaptation to R language in [5].

The SVM solver we used is the C-SVM with linear kernel. We used libSVM package [2]
suited to R language in e1071 R package [6]. We also used tune function from that package,
which perform optimising of SVM classifier accuracy over the specified parameter vectors.

The experiment goes as follows: for each data set we use k-fold cross validation with k = 10
to assess accuracy of classification. In each iteration of validation we normalise train data using
z-score method and perform tuning of C-SVM C parameter. Parameter C is selected from range
2x, where x changes from −1 to 8 with 0.3 step. Best trained model is tested on normalised test
data set. We do not perform any tuning of the ZM method. Percent parameter η is constant and
equal 5%. The comparison of accuracy rate in Table 1 proves the advantage of the ZM classifier.

Table 1. Accuracy of classification obtained by classifiers for the three investigated data sets.

ZM classifier C-SVM
artificial 86.5% 84.5%
breast 97.072% 96.779%
indian 78.061% 77.806%

CONCLUSIONS
In this paper we proposed a new linear classification method. The idea of the approach is to
scale (up or down) the original training set in order to obtain linearly marginally separable set.
Then the linear classification function that marginally separate the scaled set is the final classifi-
cation function. Thanks to the scaling operation, any training set, linearly separable and linearly
non-separable, is treated in the same way. In particular it is not necessary to incorporate a pa-
rameter C (used in standard SVM method) that plays a regularisation role but in the same time
is necessary to handle linearly non-separable sets. Provided numerical examples illustrates how
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the proposed method works on artificial and real biomedical data. The results obtained by our
approach appeared slightly better than classic C-SVM even with optimised parameter C. The pre-
sented preliminary results encourage us to further modification and improvement of the method
and testing it in other classification problems.
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