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ABSTRACT
We present a criss-cross model describing tuberculosis epidemic dynamics. The case in study considers
Warmian-Masurian province of Poland and is related to actions of active detecting of tuberculosis in homeless
people subpopulation. Therefore, the whole population is divided into two subpopulations: non-homeless and
homeless people. Each of these subpopulations consists of two groups – susceptible and infected people. We
present the analysis of existence and stability of stationary states. On the basis of this analysis we conclude
that in many cases at least one of the subpopulations becomes extinct, and only for specific parameter values
coexistence of both subpopulations is possible.

INTRODUCTION
As National Tuberculosis and Lung Diseases Research Institute in Poland reports, in our country
in the years 2003-2012 the incidence of pulmonary tuberculosis declined by 26%. The drop was
especially noticeable in Warmian-Masurian province, where it was equal to 53%. In the com-
munity of homeless people in this region, four programs of active detection of tuberculosis were
conducted in the years 2004-2011. As a result, the incidence of tuberculosis dropped not only
among homeless individuals, but also among the whole population in the region. The outcomes
of active case finding campaigns and the model describing the dynamics of tuberculosis in the
population were described in [4].

In this paper, following [4], we present simple criss-cross model of the spread of tuberculosis.
Such type of model are often used in the description of epidemics spreading not only between
different subpopulations of one population, but also among different populations; cf. [2]. We
consider two subpopulations: non-homeless and homeless people. Let us divide each of these
subpopulations into two groups: susceptible and infected people. The illness is transmitted not
only among one subpopulation, but also from the homeless people to non-homeless ones and vice
versa. That is why the criss-cross model is used. We follow the notation of [4]:

• S1(t) is the number of the non-homeless susceptible people at time t,
• S2(t) is the number of the homeless susceptible people at time t,
• I1(t) is the number of the non-homeless infectious people at time t,
• I2(t) is the number of the homeless infectious people at time t.
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Let us denote
N1(t) = S1(t) + I1(t), N2(t) = S2(t) + I2(t), (1)

i.e. N1(t) means the number of the non-homeless people at time t and N2(t) is the number of the
homeless people at time t. In the following we use the notation with subscript i, i = 1, 2, and
moreover we write Si, Ii and Ni instead of Si(t), Ii(t) and Ni(t), accordingly.

The dynamics of tuberculosis epidemic can be described (cf. [4]) by the system of four equa-
tions

Ṡ1 = −β11S1I1 − β12S1I2 + γ1I1 +A1S1, (2a)

İ1 = β11S1I1 + β12S1I2 − (γ1 + α1 −A1)I1, (2b)

Ṡ2 = −β22S2I2 − β21S2I1 + γ2I2 +A2S2, (2c)

İ2 = β22S2I2 + β21S2I1 − (γ2 + α2 −A2)I2, (2d)

where β11, β22, β12, β21 are transmission coefficients between non-homeless people, between
homeless people, from homeless people to non-homeless ones and from non-homeless people to
homeless ones, respectively. In this paper we assume that these coefficients are fixed and positive.
Parameters α1 and α2 stand for disease-related death rates for the non-homeless and homeless
people, accordingly, γ1, γ2 are recovery coefficients for the non-homeless and homeless people,
respectively. The constants αi and γi are non-negative. Additionally, A1 is a fixed net birth rate
for the non-homeless people. Therefore, A1 = b1 − d1, where b1 means a birth coefficient and d1
is a natural death coefficient, while A2 stands for a constant which includes net reproduction for
the homeless people and migration to the subpopulation of the homeless people.

BASIC PROPERTIES OF THE MODEL
The right-hand sides of Eqs. (2) are function of C1 class, so they fulfil local Lipschitz conditions.
By Picard’s existence and uniqueness theorem, solutions of the system exist and are unique for
any initial data.

Assume now that Si(0), Ii(0) > 0. Then, until S1(t), I1(t) > 0, we have

Ṡ1 > −β11I1S1 − β12I2S1 +A1S1,

yielding
Ṡ1

S1
> −β11I1 − β12I2 +A1.

From Chaplygin-Perron’s differential inequalities theorem [3] we get

S1(t) > S1(0) exp

t∫

0

(−β11I1(s)− β12I2(s) +A1) ds > 0,

which means that S1(t) is positive for every t > 0 for which the solution exists. The analogous
reasoning conducted for Eq. (2c) gives positiveness of S2(t), t > 0. Similarly, we can prove that
I1(t) > 0 and I2(t) > 0, t > 0.

In the following, we shall show that solutions exist for all t > 0. Adding Eqs. (2a) and (2b) or
Eqs. (2c) and (2d) we get

Ṡi + İi = Ai(Si + Ii)− αiIi. (3)
By the notation (1) we can re-write Eq. (3) in the form

Ṅi = AiNi − αiIi. (4)

Since Ii(t) is non-negative, we obtain

Ṅi 6 AiNi,
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and therefore
Ni(t) 6 Ni(0)eAit.

This means that the growth of solutions of (2) is at most exponential, and hence S1(t), S2(t), I1(t)
and I2(t) are defined for every t > 0.

ANALYSIS OF STATIONARY STATES
Let us denote

ki = γi + αi −Ai, κi =
αi
Ai
− 1, Ai 6= 0, i = 1, 2.

Notice that κi > 0 implies αi > Ai > 0 and ki > 0, while if Ai < 0, then κi < 0 and ki > 0.
Existence of stationary states

Looking for stationary states we replace the left-hand side of Eq. (4) by zero:

0 = AiNi − αiIi. (5)

Putting (1) into (5) gives

0 = Ai(Ii + Si)− αiIi = (Ai − αi)Ii +AiSi.

Hence

Si =
(αi −Ai)Ii

Ai
= κiIi, (6)

where Ai 6= 0. Notice that a zero stationary state, indicated by E0 := (0, 0, 0, 0), always exists,
regardless of the model parameters. The condition κi < 0 results in Si ·Ii < 0, which is impossible
due to the meaning of the variables. For αi 6= Ai we state that if κi = 0, then Si = 0, but this
immediately gives Ii = 0. Assume now κ1 > 0. For I2 = 0, Eq. (2a) yields

−β11S1 + γ1 +A1κ1 = 0.

Hence, there exists the semi-positive stationary solution E1 = (S∗
1 , I

∗
1 , 0, 0) with S∗

1 = k1
β11

. By
symmetry, the stationary solution E2 = (0, 0, S∗

2 , I
∗
2 ), S∗

2 = k2
β22

, exists for κ2 > 0. These
equilibria represent the situation when only one of the subpopulations, the non-homeless people
or the homeless ones, exists.

Let us denote also a non-zero stationary solution as E+:

E+ := (S̄1, Ī1, S̄2, Ī2), S̄1, Ī1, S̄2, Ī2 > 0.

Under certain existence conditions we obtain the specific formulae for Īi:

Ī1 =
k2β12κ1 − k1β22κ2

(β12β21 − β11β22)κ1κ2
, Ī2 =

k1β21κ2 − k2β11κ1
(β12β21 − β11β22)κ1κ2

,

where (β12β21 − β11β22) 6= 0.
Analysing the sign of κi, we can formulate the necessary conditions for the existence of sta-

tionary states:
• if κ1, κ2 6 0, then only E0 exists,
• if κ2 6 0 and κ1 > 0, then E+ and E2 do not exist, but E1 exists,
• if κ1 6 0 and κ2 > 0, then E+ and E1 do not exist, but E2 exists,
• if κ1, κ2 > 0, then E0, E1 and E2 exist, while the existence of E+ requires additional

conditions to be satisfied.
Furthermore, the additional conditions for the existence of E+ read

k1κ2
β21
β11

< k2κ1 < k1κ2
β22
β12

(7)

or
k1κ2

β21
β11

> k2κ1 > k1κ2
β22
β12

.
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Stability of stationary states
Investigating the stability, we calculate a Jacobian matrix of System (2). This matrix, indicated by
J , has the form

J =




−β11I1 − β12I2 +A1 −β11S1 + γ1 0 −β12S1

β11I1 + β12I2 β11S1 − k1 0 β12S1

0 −β21S2 −β22I2 − β21I1 +A2 −β22S2 + γ2
0 β21S2 β22I2 + β21I1 β22S2 − k2



.

Let us first focus on the zero state. The Jacobian matrix for this state reads

J(E0) =




A1 γ1 0 0
0 −k1 0 0
0 0 A2 γ2
0 0 0 −k2



.

The eigenvalues of this matrix are equal to λ1 = A1, λ2 = −k1, λ3 = A2, λ4 = −k2. Let us
suppose A1, A2 < 0. Each of the eigenvalues is negative, which gives the local stability of E0.
Moreover, the inequalities Ṅi = AiNi−αiIi < 0 for i = 1 and i = 2 result in the global stability
ofE0. If at least one parameterA1 orA2 is positive, then at least one of the eigenvalues is positive,
which gives the instability of E0.

Now we investigate the stability of E2 = (0, 0, S∗
2 , I

∗
2 ) with the necessary condition κ2 > 0.

The characteristic equation for this solution reads

det




−β12I∗2 +A1 − λ γ1 0 0
β12I

∗
2 −k1 − λ 0 0

0 −β21S∗
2 − γ2

κ2
− λ A2 − α2

0 β21S
∗
2

k2
κ2

−λ


 = 0.

Hence we obtain

λ2 − trM1 · λ+ detM1 = 0 or λ2 − trM2 · λ+ detM2 = 0,

where

M1 =

(− γ2
κ2

A2 − α2
k2
κ2

0

)
, M2 =

(
−β12I∗2 +A1 γ1

β12I
∗
2 −k1

)

.

The conditions for stability of E2 are detMi > 0 and trMi < 0 for i = 1, 2. Obviously, as
κ2 > 0, these conditions are satisfied for M1. For M2 we obtain

(k1 − γ1)β12I
∗
2 −A1k1 > 0 (8)

and
k1 + β12I

∗
2 −A1 > 0. (9)

Notice that for A1 6= 0, Ineq. (8) is equivalent to A1 (κ1β12I
∗
2 − k1) > 0. Hence, if A1 < 0, then

both Ineqs. (8) and (9) are satisfied. Moreover, forA1 = 0 they are satisfied as well. Now, consider
A1 > 0. Then from Ineq. (9) we have A1 < k1 + β12I

∗
2 , while Ineq. (8) implies k1 < κ1β12I

∗
2 .

Therefore, the stationary state E2 is stable if
• either A1 6 0
• or 0 < A1 < k1 + β12I

∗
2 < (κ1 + 1)β12I

∗
2 .

Because of the symmetry of Eqs. (2), the stability conditions for E1 are analogous to those for E2.
Conditions for stability of the positive stationary state are the subject of our present study.

However, using Routh-Hurwitz Criterion it is easy to see that Ineqs. (7) are necessary conditions
of stability.

In order to prove the global stability of the appropriate equilibrium of the system (2), Lyapunov
function can be applied. However, in general it is hard to find the Lyapunov function for the
particular epidemiological model. This technique for the simple ones is used in [1].
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Numerical simulations
In this section we complement analytical results presented above with some numerical results.
First, exemplary simulation for the stationary solution E+ was conducted. The plots showing
dependence of the solution of Eqs. (2) on time for parameters α1 = α2 = 0.09, γ1 = γ2 = 0.91,
A1 = A2 = 0.01, β11 = β12 = β21 = β22 = 0.5 are presented in Fig. 1. The coefficients
α1, α2, γ1, γ2 were estimated on the basis of statistical yearbooks from the Central Statistical
Office of Poland. The parameters A1, A2, β11, β22, β12 and β21 were chosen arbitrary. The values
of variables (S1(0), I1(0), S2(0), I2(0)) = (1465775, 390, 715, 7), used as the initial condition,
were taken from National Tuberculosis and Lung Diseases Research Institute. The numbers S1(0),
I1(0), S2(0) and I2(0) describe the sizes of the subpopulations in Warmian-Masurian province of
Poland in the year 2001.

Figure 1. Plots of S1, I1, S2 and I2 illustrating stability of E+.

Next, the sample simulation for E1 stability was also done. The phase portraits in (S1, I1),
(S2, I2), (S1, S2) and (I1, I2) planes are presented in Fig. 2. The parameters: α1 = α2 = 0.09,
γ1 = γ2 = 0.91, A1 = 0.01, A2 = −0.01, β11 = β12 = β21 = β22 = 0.5 were taken. In Fig. 2
the exemplary initial condition (S1(0), I1(0), S2(0), I2(0)) = (100, 20, 10, 5) was assumed.
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Figure 2. Phase portraits for (S1, I1), (S2, I2), (S1, S2) and (I1, I2) planes. The
initial condition is marked with the yellow circle, the stationary states is indi-
cated by the green one.
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