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ABSTRACT 

Qualitative methods of analysis of dynamic system properties possess a number of advantages over 

traditional methods based on quantitative models. Parameter estimation is particularly problematic in case of 

more complex or strongly non-linear models. System design space methodology allows for efficient 

identification and examination of qualitatively different system behaviours observed for varying values of 

parameters. The aim of presented work is to evaluate limitations of the design space method. 

 

INTRODUCTION 

Generalized Mass Action (GMA) system is one of the canonical representations of non-linear 

dynamical systems [6] which has the following form: 
  

 

 

(1) 

where nt is the number of dynamic variables; nc, the number of auxiliary variables; n = nt + nc, the 

number of dependent variables; m, the number of independent variables; αik, the rate constant for 

the k-th positive term of the i-th equation; βik, the rate constant of the k-th negative term of the i-th 

equation; Pi and Qi, the number of positive and negative terms of the i-th equation, respectively; 

gijk and hijk, the kinetic order of the influence of the j-th variable on the k-th positive and negative 



   

 

   

 

term of the i-th equation, respectively; and Xj, the j-th variable. The first nt variables are the 

dynamic variables, the next nc are the auxiliary variables and the last m are the independent 

variables [3]. 

A sub-class of the GMA systems, called the S-systems, comprises of systems described by 

ordinary differential equations having only one positive and one negative term [8]. In the 1980s, 

S-systems were proposed as the simplest canonical form of non-linear systems exhibiting saturable 

and synergistic properties [8]. S-systems can be transformed into log-linear systems, facilitating 

the analysis of their dynamic properties. Efficient numerical integration algorithms were developed 

for S-systems that allowed a significant improvement in terms of computation times [8]. Methods 

of calculation of explicit symbolic solutions for non-zero steady states and of symbolic 

determination of local stability were also proposed [8]. With rapidly growing capabilities of the 

computers, the efficiency of numerical integration algorithms tailored for S-systems could no 

longer outweigh the limitations of S-system based approach in the biological systems modelling. 

However, the S-system concept has been used together with the more general GMA canonical form 

in a new methodology of qualitative dynamics analysis developed by Savageau and co-workers 

[3]. To understand this methodology, it is first necessary to introduce the concept of the design 

space of a biochemical system and other auxiliary definitions. The design of a biochemical system 

represented as a GMA ordinary differential equation system consists of the form and the kinetic 

orders of reactions described by these equations, i.e. the assumed exponents of the powers of 

biochemical species concentrations in the right hand sides [6]. In order to characterize all possible 

qualitative behaviours of a system assuming a given design, a wide range of parameter values 

needs to be taken into consideration. 

Sampling the parameter space is an inefficient and computationally expensive way of searching 
for distinct qualitative behaviour. The system design space approach is based on two observations. 

First, at any moment of the system evolution, regardless of assumed parameter values and initial 

conditions, a maximal positive and a minimal negative term can be identified for each of the GMA 

system equations. Second, the terms of greatest magnitude of each sign influence the evolution of 

the system to the largest extent at that particular moment of time. Conditions for the dominance of 

an arbitrarily chosen terms of the i-th equation take form of inequalities [3]: 
 

 

 . 

(2) 

 

Logarithmic transformation leads to a system of linear inequalities [3]: 
 

 

. 

(3) 

 

Dominance of single terms in each of the GMA system equations requires conditions in the form 

of a system of inequalities to be satisfied. By neglecting all but the dominant terms of all equations, 

we obtain an approximation of the GMA system in the form of a S-system. A set of dominance 

conditions in the form of a system of inequalities represents a region of dominance of an S-system 

in the variable and parameter space. 
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In order to characterize different qualitative behaviour of the system, the Design Space method 

assumes every possible combination of dominant positive and negative terms in every equation, 

yielding a pool of S-systems dominating in different regions of the combined parameter and 

variable spaces. Individual combinations of dominance assumptions are referred to as cases.  

Steady states of the S-systems corresponding to the cases can be determined using linear 

algebra and represented as functions of the parameters of the original GMA system. By substituting 

steady state solutions for the state variables in a system of inequalities representing dominance 

conditions of an S-system, the regions of dominance are projected onto parameter space, creating 

the design space of the GMA system.  

The dominant S-systems are nonlinear subsystems, presumed to approximate behaviour of the 

full system within defined regions of the parameter space. The aim of the design space method is 

to identify the so-called qualitative phenotypes, i.e. dynamical systems sharing the same design, 

but exhibiting qualitatively different dynamics due to differences in the parameter values. 

Qualitative phenotypes are analogous to phenotypes as defined in genetics, in the sense that they 

are special cases of a more general system that can exhibit various behaviour depending on its 

parameters, corresponding to different environmental conditions and genetic differences between 

individual organisms of the same kind [10]. Despite the broad range of possible applications of 

design space method in systems analysis, there are some caveats. First, the underlying assumption 

that S-systems can provide accurate approximations of the qualitative behaviour of more complex 

non-linear systems cannot be justified by a formal mathematical proof. Moreover, little is known 

concerning the coverage of the parameter space by the valid regions of phenotypic dominance 

(referred to as coverage further in this text) and its dependence on the complexity of the system. 

The aim of this study is to examine the coverage utilizing the Design Space Toolbox V2 [3] 

and three models of differing complexity as examples. Secondary aim of the study is to evaluate 

the applicability of the design space method to qualitative analysis of a model that was shown 

before to undergo different kinds of bifurcations, dependent on a single bifurcation parameter. 
 

MATERIALS AND METHODS 
 

Design Space Toolbox V2 (DSTv2) C library [3] has been compiled from source codes on one 

of the nodes of the Ziemowit HPC cluster under the CentOS 7 operating system. IPython and 

Design Space Toolbox Python interface have been installed on the top of Python 2.7 on the same 

computer system. We chose the model of the p53-Mdm2 regulatory module [1] to perform the tests 

of the method implemented in the Design Space Toolbox v2. The original model consists of seven 

ordinary differential equations, of which six describe p53 and Mdm2 protein concentrations in 

different forms and one describes DNA damage. Additional algebraic equation describes the p53 

degradation ratio, dependent on the DNA damage, denoted kd2. In the original paper authors 

performed bifurcation analysis, in which the kd2 was treated as a bifurcation parameter, hence 

neglecting its dependence on the DNA damage [1]. A Saddle-Node, Saddle-Node-Loop and Hopf 

bifurcations were found when changing values of the kd2 parameter, resulting in a complex 

dynamics.   

For the purpose of evaluation of the Design Space Toolbox performance, we similarly treated 

kd2 as a parameter and omitted the DNA damage variable, as only kd2 was dependent on its value 

in the original model. Remaining six ordinary differential equations were recast into generalized 

mass action (GMA) system canonical form [6] in order to obtain a system of equations compatible 

with the DSTv2 input format:  
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(4) 

 

Left hand sides of the equations are derivatives of the dependent variables with respect to time. 

X100 and X200 are auxiliary variables introduced to yield a canonical GMA form of the model, 

equal to denominators of fractions found in the original equations. 

The first part of the DSTv2 analysis we performed, consisted of following steps: 

1. Definition of the design space for the model in GMA form; 

2. Validation of the phenotypes of all possible sub-systems found by the DSTv2 for the 

GMA system; 

3. Evaluation of design space coverage by the dominance regions of the validated S-systems. 

The parameters, unless specifically constrained to match a priori knowledge of the modelled 

system, can assume any positive real values, hence the parameter space extends from zero to 

positive infinity in all dimensions. Since all dominance regions of all system designs considered 

in this study are bounded polytopes, the actual greatest values of the parameters belonging to sums 

of their respective dominance regions are finite numbers, facilitating coverage evaluation by means 

of Monte Carlo method. Evaluation of design space coverage was performed by Monte Carlo 

simulation, where parameter values were randomly and independently chosen from the range 

between zero and an assumed maximal value of the parameter. In order to choose reasonable 

assumptions as to the maximal parameter values, we have performed following steps. First we have 

used DSTv2 built-in method to find a parameter set lying on one of the vertices of every dominance 

polytope. Further, we have searched those parameter sets for the single greatest coordinate in each 

dimension separately.  

Each vector of random parameters generated in the course of Monte Carlo simulation was 

checked against dominance conditions of all valid S-systems. Fraction of vectors lying within at 

least one region of dominance was calculated as an estimate of the spatial coverage of design space 

by the dominance regions found by DSTv2. 

The same procedure for parameter space coverage determination was performed for two 

simpler models, both used before to demonstrate the possibilities of design space methodology 

[10]. First model consists of two differential equations with four dependent variables (including 

two auxiliary variables) and nine independent variables. Its design space contains 16 valid 

phenotypes [3]:  
 

 

 

(5) 
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Second model, called Relaxation Oscillator [9] is more complex yet it has only 15 valid 

phenotypes:  
 

 

 

(6) 

 

 

We couldn’t reproduce the original bifurcation analysis of the p53-Mdm2 model utilizing 

design space methodology proposed in [10] since the case encompassing original parameter set 

was not recognized as a valid case by DSTv2. Instead, we have used DSTv2 to calculate steady 

state solution of the dominating S-system and find a representative parameter set for each valid 

phenotype in order to perform numerical simulations to inspect the qualitative behaviour. We have 

performed numerical simulations of the p53-Mdm2 model in unchanged form with Matlab 

ODE15s solver, switching the irradiation value to 1 after 30 hours of equilibration for 30 minutes 

and back to 0 for another 40 hours. The results of numerical simulations were searched for 

sustained oscillations after irradiation exposure, which we were expecting to obtain. 

 

RESULTS 
 

1518 valid cases were found in the design space constructed for the p53-Mdm2 model. 10 000 

iterations of the Monte Carlo simulation were performed. 1047 parameter vectors were found to 

lay within the dominance boundaries of at least one qualitative phenotype, yielding approximately 

10% coverage of the parameter space. As expected, parameter space coverage by dominance 

regions of the p53-Mdm2 system design was significantly scarcer than for the designs of simpler 

models presented in [10]. The coverage of the parameter space was complete or nearly complete 

for both, the simple design with 16 valid phenotypes and more complex relaxation-oscillator 

design. 100% of parameter sets generated for the former design and 98% for the latter fell inside 

valid dominance regions of their respective phenotypes. 

 Counting the total number of encompassing phenotype dominance regions for every random 

parameter set generated, allowed us to calculate the fraction of parameter space occupied by 

overlapping parts of dominance polytopes. We found no overlap between the valid dominance 

regions of the p53-Mdm2 design, i.e. all the random points belong to either none or exactly one 

region. The overlapping parts of dominance regions of the simplest design occupy approximately 

0.005% of the total volume of parameter space examined. The relaxation-oscillator design 

produces the largest overlap in dominance regions, where approximately 68% of random space 

parameter points belong to a single dominance polytope, 28% belong to three dominance 

polytopes, 12% belong to 5 dominance polytopes and no overlaps of 2 or 4 regions were found. 

 Neither the total coverage nor the fraction of overlapping volumes of dominance polytopes seems 

to be directly correlated with the number of dependent or independent variables in the GMA 

system. The simplest design has two dependent variables, the relaxation-oscillator has 4, and the 

p53-Mdm2 has 6. The number of dependent and auxiliary variables is: 9, 15 and 18 respectively. 

The significant differences in examined geometric features of the phenotypic dominance regions 

suggest, that the interconnectivity of the components of the modelled system influence its design 

space properties to a much greater extent than the sole number of variables in the system. 
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It was not possible to directly compare the results of the design space based qualitative analysis 

of the p53-Mdm2 model with bifurcation analysis [1], because case encompassing original 

parameter set was not validated due to lack of closed form steady state of the corresponding S-

system. Out of 1518 valid qualitative phenotypes found by DSTv2 there was only one exhibiting 

damped oscillations of the total p53 level. Moreover the amplitude of oscillations is far too small 

and the mean value is rather high compared to simulations results shown in [1].  

 

 

Figure 1. Examples of simulation results obtained with parameters and steady state solutions used as initial 

conditions generated with DSTv2. Total p53 quantity (dimensionless) plots are shown, time is expressed in 

hours, numbers above plots are case designations. 

In order to rule out the possibility that p53-Mdm2 model is highly sensitive to parameter 

changes we have performed simple analysis where the parameters of the model were changed 

randomly, one at a time by up to 30% and while retaining similar qualitative behaviour. After the 

irradiation a digital oscillatory response was observed. Changes of parameter values resulted in 

varying number of pulses and times between them, but not to a qualitative change of the system 

response. 

 

CONCLUSIONS 
 

We have shown that the coverage of the parameter space by the dominance regions of qualitatively 

distinct phenotypes of a dynamical system may vary at least between a 10% and 100% of its total 

volume. More sophisticated methods are needed in order to allow a better understanding of the 

underlying geometry of the dominance regions. Based on anecdotal examples, in smaller systems, 

coverage by S-systems is close to 100%, while the rather small uncovered regions, correspond to 

systems behaving “badly”, for example “exploding” in finite times (Michael Savageau, personal 

communication). Based on discussion further on, this is not the case for the p53 model.  

One explanation for a significant fraction of the parameter space remaining hollow for more 

complex designs, such as design based on the p53-Mdm2 model, is that some of the dominance 

regions could be narrow along one or a number of the dimensions, but elongated along the 

remaining dimensions extending the total parameter space taken into consideration. The reasoning 

behind this hypothesis is that most of the parameters do not influence the magnitude of most terms 

of such GMA systems. 

The lower coverage indicates greater average distances between the boundaries of the 

dominance regions, as we only considered a finite subsets of the infinite parameter spaces, 

encompassing all the dominance regions discovered by the DSTv2 for respective designs. 

Conversely, greater distance between dominance regions boundaries could show the advantage of 

design space methodology over any method based on sampling the parameter space in terms of its 

efficiency. On the other hand, representative parameter sets, generated by DSTv2, corresponding 

to different qualitative phenotypes of the p53-Mdm2 model did not allow us to observe expected 

qualitative properties. Lack of overlapping regions suggests that p53-Mdm2 model is not capable 

of exhibiting some complex behaviours, such as bi-stability [3], [10], which is not the case [1]. 

Large number of discovered dominance regions further complicates the analysis and their sparse 

distribution over the parameter space means that most of the regions lie beyond the physically 

reasonable boundaries of parameter values associated with biochemical reaction rates. All of this 
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clearly shows that the applicability of the design space method to system design of higher 

dimensionality may be limited. 
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