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ABSTRACT
A modification of the Hahnfeldt et al. model of tumour growth under angiogenesis is proposed in this study.
The tumour cell population is subdivided into two compartments which are then considered as competing
species. Basic mathematical properties of the model are investigated.

INTRODUCTION
Angiogenesis is a process in which new blood vessels sprout from the existing vasculature. With-
out additional blood supply tumour growth is limited by the amount of nutrients available through
diffusion. Emergence of new blood vessels also provides tumour cells with a direct access to the
bloodstream and facilitates metastasis. The onset of angiogenesis hence often marks a transition
from a benign mass to a malignant cancer. This may have disastrous consequences for the host.
Much attention has been therefore paid towards a development of antiangiogenic therapy aimed to
destroy the tumour’s vasculature and limit its growth. [3]

As a basis for our study we take the Hahnfeldt et al. [1] angiogenesis model. This model
is widely accepted and its parameters are well-fitted to the experimental data. In this model the
growth of tumour under angiogenesis stimulation/inhibition is represented by the following system
of two non-linear differential equations

V̇ (t) = −λV (t) ln
V (t)

K(t)
,

K̇(t) = −µK(t) + bV (t)− dK(t)V 2/3(t),

(1)

where V (t) represents the tumour volume at time t, and K(t) is the time-varying carrying capacity.
In this model Hahnfeldt et al. assumed that the tumour growth is governed by the Gompertz-

type equation with carrying capacity related to the size of the tumour vasculature. Therefore the
resulting equation for V (t) is the Gompertz equation with the time-dependent carrying capacity
K(t). Moreover, the dynamics of K(t) depends on the stimulation process initiated by poorly
nourished tumour cells (here bV (t)), vessels loss due to the accumulation of the inhibiting factors
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secreted by tumour cells (−dK(t)V 2/3(t)) and natural endothelial cell death (−µK(t)). It should
be noted that the exponent 2/3 present in the second equation represents the ratio of the tumour
surface to its volume.

MODEL
We propose a modification of the model (1) in which we subdivided the cell population into two
classes (e.g. resistant and sensitive to the potential treatment [2]) and considered them as compet-
ing species. Rather than focusing on the mutations from one class to another, we will focus on
explicit competition between cells belonging to different classes. This is why we first proposed
a “pure competition” model which ignores the mutations. The result is the following system of
three ordinary differential equations (time dependence of the variables K, V1, V2 was omitted for
clarity):

V̇1 = −λ1V1 ln

(
α11V1 + α12V2

K

)
,

V̇2 = −λ2V2 ln

(
α21V1 + α22V2

K

)
,

K̇ = −µK + (b1V1 + b2V2)− d (V1 + V2)
2/3

K,

(2)

where αii = 1, i = 1, 2, and αij , i 6= j, are the competition coefficients between the different
types of tumour cells.

A potential application of such subdivision includes the modelling of acquired chemotherapy
resistance. Explicit competition between tumour cells has, to the best of our knowledge, never
been considered in the literature. However, in order to gain some insight into the dynamics and
properties of this system, we focus on unperturbed tumour growth in the absence of therapy.

MATHEMATICAL PROPERTIES
We will investigate basic mathematical properties of (2), in line with the analogous findings re-
garding the original model (1), as obtained in [4]. We restrict our attention to the set

I = {(V1, V2, K) ∈ (R+)3},
which is physically relevant.

We firstly note, that the right-hand side vector field associated with (2) is of class C∞ in I ,
therefore Picard-Lindelöf Theorem yields local uniqueness and existence of solutions with given
initial conditions.

Proposition 1. The set I is invariant for the system (2).

Proof. The equation for the volume of cells of type i = 1, 2 is equivalent to the integral equation

Vi(t) = Vi(0) exp

(
−λi

∫ t

0

αi1V1(s) + αi2V2(s)

K(s)
ds

)
,

which is non-negative, provided that V1(0), V2(0) ≥ 0.
For K = 0 we have K̇ = b1V1 + b2V2 ≥ 0, since b1, b2 and V1, V2 are all non-negative. �

Proposition 2. The solution to the system (2) through x ∈ I exists for all t ≥ 0.

Proof. From the inequality

− lnx ≤ 1

x
− 1 for x > 0
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it follows that for i = 1, 2

V̇i ≤ λiVi

(
K

αi1V1 + αi2V2
− 1

)

≤ λiK
Vi

αi1V1 + αi2V2

≤ λiK,

where we used non-negativity of V1, V2 and positivity of the parameters αij (i, j = 1, 2).
From the equation for the carrying capacity, using non-negativity of V1, V2 and K

K̇ ≤ b1V1 + b2V2 ≤ max{b1, b2}(V1 + V2).

It follows that
d

dt
(V1 + V2 + K) ≤ m (V1 + V2 + K) ,

where m = max{b1, b2, λ1, λ2}. Hence

V1 + V2 + K = O(emt) for t ≥ 0

and the solution exists for all t ≥ 0. �

STEADY STATES AND STABILITY
Now we will investigate the stability of the steady states of the system (2). It is easy to show that
the system (2) has at most three steady states.

The first two steady states are semi-positive and correspond to the domination of one type of
cells over the other. Let S1∗ = (V 1∗

1 , 0, K1∗) denote the coordinates of the first steady state in
which the first cell type dominates, where

V 1∗
1 = K1∗ =

(
b1 − µ

d

)3/2

.

It is easy to notice that the steady state S1∗ exists provided that b1 > µ. By direct calculations it
can be verified that the steady state S1∗ is stable if α21 > 1 and unstable if α21 < 1.

By symmetry, the steady state S2∗ = (0, V 2∗
2 , K2∗) exists if b2 > µ with

V 2∗
2 = K2∗ =

(
b2 − µ

d

)3/2

.

The steady state S2∗ is stable provided α12 > 1 and unstable provided α12 < 1.
The third steady state S3∗ = (V 3∗

1 , V 3∗
2 , K3∗), at which both cell types coexist, exists provided

that

α12 < 1, (3a)
α21 < 1, (3b)

b1(1− α12) + b2(1− α21) > µ(1− α12α21), (3c)

and has the following coordinates

V 3∗
1 =

1− α12

1− α12α21
K3∗,

V 3∗
2 =

1− α21

1− α12α21
K3∗,

K3∗ =

(
b1(1 − α12) + b2(1− α21)− µ(1− α12α21)

)3/2

d3/2(1− α12α21)1/2(2 − α12 − α21)
.



16 P. Bajger, M. Bodzioch

Proposition 3. If
λ1(b2 − b1α12) + λ2(b1 − b2α21) > 0, (4)

then the steady state S3∗ is stable.

Proof. The Jacobian at the steady state S3∗ is

J(S3∗) =




b1(1−α12)+b2(1−α21)
1−α12α21

b1 − 2
3σ b2 − 2

3σ

λ1
1−α12

1−α12α21
−λ1

1−α12

1−α12α21
−λ1α12

1−α12

1−α12α21

λ2
1−α21

1−α12α21
−λ2α21

1−α21

1−α12α21
−λ2

1−α21

1−α12α21


 ,

where

σ =
b1(1− α12) + b2(1− α21)− µ(1− α12α21)

2− α12 − α21
> 0,

by (3).
Let p(x) = x3 + a2x

2 + a1x + a0 denote the characteristic polynomial of the Jacobian J . We
will show that a2, a1, a0 > 0 and a2a1 > a0, and use the Routh-Hurwitz stability criterion to
show that all roots of p have a negative real part.

We have

a2 =
b1(1 − α12) + b2(1− α21) + λ1(1− α12) + λ2(1− α21)

1− α12α21
> 0,

due to the condition (3).
Moreover

a1 =
(1− α12)(1− α21)

(1− α12α21)
[λ1(b2 − b1α12) + λ2(b1 − b2α21)] ,

+ λ1λ2
(1− α12)(1− α21)

1− α12α21
+

2

3
σ

λ1(1− α12) + λ2(1− α21)

1− α12α21
,

>0

because of the conditions (3) and the assumption (4).
We also have

a0 =
2

3
σ(1 − α12)(1 − α21)λ1λ2

2− α12α21

(1− α12α21)2
> 0.

Finally, assuming again (4), we estimate

a2a1 >
2

3
σ

(
λ1(1− α12) + λ2(1− α21)

)2

(1− α12α21)2
,

>
2

2− α12 − α21
a0 ,

>a0.

The Routh-Hurwitz stability criterion therefore applies. �
Furthermore, we note that if the cells proliferate at the same rate (λ1 = λ2) or they secrete

the proangiogenic factors at the same rate (b1 = b2), then the condition (4) is satisfied and S3∗ is
stable, whenever it exists.

Now we describe the link between the stability and existence of the states S1∗, S2∗ and S3∗.
Suppose that the steady states S1∗ and S2∗ exist and are unstable. Note that conditions (3a)
and (3b) are satisfied and that we may estimate

b1(1 − α12) + b2(1− α21) > µ(1 − α12 + 1− α21)

= µ
(
(1− α12)(1− α21) + (1 − α12α21)

)

> µ(1 − α12α21),
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(a) (b)

Figure 1. Numerical solutions to the system (2): (a) the values of the relevant
parameters are as in Table 1, α12 = 0.8, α21 = 1.1; (b) the values of the relevant
parameters are as follows: λ2 = 0.042, b2 = 0.30, α12 = 0.7, α21 = 0.4. The
other parameters are as in Table 1.

Figure 2. Bifurcation diagram for the system (2). For α12, α21 < 1 the steady
state S3∗ exists and is stable provided that (4).

so that the condition (3c) is satisfied and the steady state S3∗ exists.
We therefore conclude that the (α12, α21) parameter subspace is divided into four regions such

that crossing from one region to another changes the stability of at least one steady state. These
results are summarised in Figure 2.

It is important to note that although the positive steady state S3∗ exists (see Figure 2), it may
be unstable. For example, under certain choice of parameters system (2) exhibits oscillatory be-
haviour, as shown in Figure 1b.

DISCUSSION
A modification to the model proposed by Hahnfeldt et al. in (1999) [1] is proposed in this study.
The modification introduces heterogeneity of the tumour cells with a potential aim to model the
chemotherapy resistance. Explicit competition between different types of cells is considered in the
absence of therapy. The problem is shown to be well-posed and the stability of the steady states
was examined.

The model proposed has so far ignored mutations. This is because the initial aim was to for-
mulate a “pure” system of equations to isolate the mechanism of competition and study it on its
own. A next step in the model development would be to include mutations and conduct sensitivity
analysis in order to determine the sensitivity to the parameters responsible for these two processes.
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Name λ1 λ2 µ b1 b2 d

Unit 1/day 1/day 1/day 1/day 1/day day−1vol−2/3

Value 0.192 0.192 0 5.85 5.85 0.00873
Table 1. Parameters for the model. The values of parameters λ1, λ2, µ, b1, b2, d
are taken from [1]. The values of α12 and α21 were varied.

Figure 3. Schematic diagram of the interactions between different components
of the final model. Grey arrows denote possible treatment targets.

This study is the first step in the development of a full model which incorporates two processes
crucial from the point of view of effective chemotherapy planning – varying drug resistance and
angiogenesis. Figure 3 shows a scheme of all the interactions which are to be included in the final
version of the model.

By introducing treatment into the model it will be then possible to identify the mechanism
responsible for the process of acquired drug resistance. Such an analysis will significantly improve
our understanding of the behaviour of tumours and their response to chemotherapy.
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