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ABSTRACT

A simple model of a tree trunk is described. Its purpose isain the shape of giant trees and to analyse
the durability of the trunk subject to the gravitation anchavforces. The model has the form of a nonlinear
integral equation, which may be solved numerically usirggdbllocation method.

INTRODUCTION

This paper was inspired by the Giant Sequoia t&exjuoiadendron giganteQigrowing in Jasov,
a town in eastern Slovakia. The paper attempts to explaig,thd trunks of giant trees have the
shape they have. The shape of any plant and its parts is #h& effthe evolution, which forces
plants to make the best use of available resources, likewaittients in the soil and the sunlight.
There are also restrictions, of which here we pay attentiainé mechanical durability of plant
organs. The durability of wood is of primary importance foe highest trees. A simple model of
a tree trunk presented in this paper is based on the assumtptibduring the strongest wind the
tree can resist, the maximal tension in the horizontal gestat all altitudes is the same. In this
way the material is used to build the tree trunk in an optimay.w

We consider only the forces caused by gravitation and wirtte model developed below is
based on a number of simplifying assumptions. One of theheifinear correspondence between
the tension and deformation of the material, widely knowthasHooke’s law [1]. It is assumed
that mechanical properties of wood are the same in the emtiuene of the trunk. Only stretching
and compressing the fibres along the trunk axis are considdtes assumed that the trunk is
a solid of revolutionj.e. each horizontal section is circular. The problem is to finel filmction,
whose graph is the generatrix of this solid of revolution.

Other assumptions are as follows: the distribution of thegtiteof branches along the trunk is
proportional to the distribution of the weight of the trungslf. This assumption is of course not
true, but in case of the Giant Sequoia trees, like the onesovjalue to the shape of the crown
it seems not very distant from reality. Another assumpt®ahout the distribution of the wind
force bending the trunk. Here we assume that the force pelamngith is constant along the trunk.
Usually the wind speed increases with the altitude, but thledst branches are short.

The tree trunk may be bent by the wind and, if the trunk is natéy vertical, also by the tree
weight. The general shape of trunks of trees at some age igrdoute of the species. Therefore
we assume that the parameteiinfluencing the trunk shape, is the maximal slant for themgse
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and the angle of inclination of a particular tree may be sgne «. The model makes it possible
to find the tensions also in this case.

FORCES IN THE TRUNK

The calculation in this paper is done using a Cartesian systiecoordinates, whose axis is
vertical (with0 at the ground level), thg axis is horizontal and any slant of the trunk is oriented
towards the positivg halfaxis. Thez axis is perpendicular to the other two. To consider the max-
imal tensions we assume that the wind direction and oriiamté that of the positivg halfaxis.

The trunk height is denoted by. The horizontal section of the trunk at the lewek a circle
K (x) of radiusr(z). Based on the assumption that the distribution of weightrahbhes along
the trunk is proportional to the distribution of the trunkiglet (see Introduction), we can calculate
the weight of the part of the tree abaves
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whereD is a constant. The weight is balanced by the compressinptens, constant in the area

of the section, hence
_ S(@) D H 9
Te = ar2(z)  wr2(x) /T ri(t) dt.

For each horizontal sectioR (x) we introduce a coordinate syste, ¢), whose axes are
respectively parallel to thg, z axes of the system defined above. For a beam (trunk), whose
section is changing slowly along its axis and which is mada ofaterial satisfying the Hooke’s
law, the tension caused by bending in theplane at the pointy, ¢) is proportional ta;. Assuming
that the Hooke's law is satisfied, the total moment of ford¢estching and compressing the wood
fibres may be computed by integrating the moment of a lineatfanoy, (7, ¢)

o max
M= [ e ganac= [ Smsrtanac

r(x) 2m
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The symboloy, . denotes the maximal compressing tension caused by berdihg isection
area. The torque calculated above balances the sum of lgetwilques caused by the wind and
the gravitation.

With the assumption that the maximal wind force per unit teng, is constant along the trunk,
the bending torque caused by the wind is

H
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The assumption about the distribution of weight of branaine&es it possible to calculate the
bending torque caused by gravitation

Mg (z) = Dtana/H r2(t)(t — x) dt.

We assume that is small, so thatin o ~ o ~ tana.
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THE MODEL

Trunk shape equation
The maximal stretching tension in the sectifi{x) is oc(x) — obmax(x), While the maximal
compressing tension i8.(z) + oLmax(z); due to the orientation of the gravitation force, the
absolute value of the latter is greater. Therefore we asghatethe durability of the trunk is
determined by the limit of the compressing tension for theayowvhich we denote by, ..
The basic idea of the model is, that during the strongestilplessind the maximal compressing
tension for allz is equal to this limit. It is described by the following edqioat

Omax = meax($) + Uc($) = UW(J)) + O'g(.l?) + O'C(J))
2F(H — ) 4Dtana [T , D ",
= )t —x)dt + —— t) dt.
mr3(z) + 3 (x) /z (B¢ - z)dt + mr2(x) /z (1)
The functionss,, ando, describe respectively the maximal compressing tensionsechby the

wind and bending due to the trunk slant. It is convenient ptaee the parameters, D andoy,ax
by f = F/omax andd = D/oyax. Let

ow () _ 2f(H — x)?

nw(x) = oo JH) (.1?) )
_ og(z)  4dtana HTQ .
ng(x) - Omax - 3 ((E) ‘/T (t) (t ) dtv

H
ne(z) = 2@ __d / P2 (t) dt.

Omax 72 (x)
The functions defined above describe respectively shartensions caused by the wind, bending
due to the trunk slant and compressing by the weight in tha toaximal compressing tension at
the levelz. They are nonnegative and

Nw(x) +ng(z) +ne(x) =1 forz € [0, H). 1)
Remark. This equation may be rewritten in the form

H
7r(z) — d/ (4tana(t — z) + r(z))r*(t) dt = 2f(H — z)>.

A solution to be found must satisfy the boundary conditiofs = ro andr(H) = 0, whererg
(radius of the section at the ground level) dddtrunk height) are obtained by measurement. The
parametery, as explained in Introduction, is the maximal slant for thedes. The parametess
f andd may be chosen in experiments, so as to obtain solutions vdeitdrmine shapes possibly
close to the shapes of trunks of living trees. The valugisfrelated with the dimensiorf andr
and by the share, = n.(0) of the tension caused by wind at the ground level. In exparime
one can take arbitrarily.,,o € (0, 1) and compute

TroNwo
= 2H?
The value ofd must be chosen so as to obtain a functi¢m) satisfying (1)and the boundary
conditions; for the discrete model it is done by solving aeysof nonlinear equations.
Discrete model and numerical algorithm
The numerical solution of (1) may be found using the collmratnethod [2] as follows. The
interval[0, H] is divided toN parts, each of length = H/N. The approximate solutiom{)(z),
is assumed to be a continuous spline of dedre@hose knots are the numberis wherei =
0,...,N. The collocation at these knots yields the system of eqastio

n h)+n h) +n h)— 1= ori:=20,... — 1.
W (ih) +n{M (ih) + 0 (ih) =1 =0 fori=0,...,N -1 @
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Given f, a and the boundary condition$™ (0) = ro > 0 andr")(H) = ry = 0, the unknown
quantities are the function values = (") (ih) fori = 1,..., N — 1 and the parametef. The
number of unknowns is thus equal to the number of equations.

With the assumed form of the numerical solution, the intedsain the expressions for shares
ngl)(x) andn{"” (x) are quadratic or cubic polynomials in each interval (i + 1)h|. Therefore
the integrals may be computed exactly using the Simpsomdmiure [2]. Using it we obtain

gt Uy e B 2
a; = Y (7" (t)) dt = 3(7”3' T T4l +7”j+1)a
J

(FJ+1D)h
bi; / (F™ (1)) (t — ih) dt
jh
h2 2 2
= ?((j — i+ 1[4 + (G — i+ 1/2)rria + (G — i+ 3/4)r7 ).

Let
H N-1 H N-1
A C‘éf/ @) at=3a, B déf/ (M)t —inyat = 3" by.
ih =i ih =i
Using these symbols, the system (2) may be rewritten in thma fo
gi(rl,...,rN,l,d):O, Z'ZO,...,N—]., (3)
where
2
2f((N —1i)h 4dt d
gi(rla"'aerlad) & f(( 3 ) ) + a:?aBz'f'—QAz_]-
r; ™r; T

The system (3) may be solved using the Newton’s method. Tbessary derivatives of the func-
tionsg; are

% _o fork=o0.....i-1,
8rk
dgi _ —6f((N—)h)" | 4diama (9B, 3 .\ d (94 2,
or, mrd e or, " ar2\or 1 ')’
dg; 4dtana 0B; d 0A4; .
T vy T fork = 1,....N —1,
oy g Ory  wr? Ory, or B S
dg; 1 [4tana
od  mr? ( i it z)
To the formulae above we substitute
8141 86” h 831 8[)“ h2
Em 87@- 3 ( ri Tz+1)7 87’1' 87’1' 6 (’I"z + TH—l)’
and fork > i

8141' 8ak_1 8ak h
= _— = — _ 4 .
oy orr oy 3(7“k 1+ 4rg + Trr1),

OB;  Ob;j_1  Oby  h? . . .
= — =—((k—i—1/2)ry— 4(k — k— 1/2 .
ory ory N ory 3 (b =i =1/2)ra + 4k —d)ric+ (b — i+ 1/2)rk)
The derivative matrix of the vector functignmade ofgg, . .., gn—1 iS upper Hessenberg [2].
Its coefficients may be computed efficiently, using the foaeul y = By = 0 and
Ai = a; + Aita,

Bi:bii+Bi+1+hAi+1 fori=0,...,N —1.
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The initial point for the Newton’s method (good enough foeaberiments made by the author)
may consist of the number$0) = ro(N —14)/N (these numbers describe a cone) and the number
d(o) —3 7T7"g — 2fH2
Hri(Htana +rg)’

obtained by solving the equati%(r§0), e 7"§\?),1, d) = 0.

EXPERIMENTS AND CONCLUSIONS

The dimensions of the Giant Sequoia in Jasov were measufadjinst 2012 [3]; the height of the
tree wasl7.7m and the girth of its trunkl.3m above the ground level, w&s42m. The parameters
taken for the numerical experiments wdfe= 47.7, 7o = 1.1 and N = 1024.

Solutions were found for four values af,o and four angles.. Some results of the 16 experi-
ments are gathered in Table 1. Its last three columns shoshtires of the tensions at the ground
level. Figure 1 shows the graphs of the solutions; to imptbeevisibility of the influence of the
parameters on the solution, different scales were assuoneé&h axis.

Table 1. Parameters of numerical solutions and shares sibtenat the ground level

@ f [m] d[m™] nwo Ngo Mo
0° 4.594-107° 02731 0.05 0 0.95
0° 9.189-107° 0.2263 0.1 0 0.9
0° 1.838-10"* 0.1740 02 0 0.8

0°  3.676-107* 0.1121 04 0 0.6

0.5° 4.594-10"° 0.1942 0.05 0.2308 0.7192
0.5° 9.189-107° 0.1620 0.1 0.2318 0.6682
0.5° 1.838-10"% 0.1246 0.2 0.2187 0.5813
0.5° 3.676-10"% 0.07954 0.4 0.1740 0.4260
1°  4594-10°° 0.1515 0.05 0.3737 0.5763
1°  9.189-107° 0.1265 0.1  0.3697 0.5303
1°  1.838-107* 0.09711 0.2 0.3437 0.4563
1°  3.676-10"* 0.06165 0.4 0.2697 0.3303
2°  4594-10"° 0.1054 0.05 0.5388 0.4112
2°  9.189-10"° 0.08804 0.1 0.5252 0.3748
2°  1.838-10"* 0.06742 0.2 0.4811 0.3189
2°  3.676-107% 0.04253 0.4 0.3721 0.2279

ke mhe ahe ik
Nwo = 0.1 Nwo = 0.2

0

To

Figure 1. Graphs of numerical solutions.

As one can see, the influence of the parameten the trunk shape decreases with growth of
the reserve of durability for strong winds.
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Figure 2 shows graphs of the tensiens, o, ando, for a trunk, whose shape corresponds to
the parametere = 1° andn,o = 0.1. The graphs on the left side show the cas@ et a. On
the right side one can see what happens when the trunk itiolingngle is smaller than.

H“l‘ Nwo = 0.1 H“l‘ Nwo = 0.1
a=0F=1° a=1° 5=0.5°

\ Ow

Ow + 0g + 0¢

og| \0oc Og

0 0

0 Umax 0 Umax

Figure 2. Maximal compressing tensions along the trunk.

Figure 3 shows the tensions, (x), o4(x) and os(x) and their sums when the wind force
exceeds the limit by0% and by20%. As one can see, it is most likely that the trunk breaks close
to the top, which ensures some protection to the lower pattietree. This observation, in the
author’s opinion, provides a justification for the model.

H“l‘ Nwo = 0.1 H“l‘ Nwo = 0.1
a=1° p=0.5° a=1° pg=0.5°
Ow Ow
Ow + 0g - 0c Ow + 0g A 0c
JC JC
0 Og - 0 Te —
0 Omax 0 Omax

Figure 3. Maximal compressing tensions for the wind toorgiro

In the experiments described above the parameters of thelmeie chosen so as to obtain
solutions which look like the tree from Jasov on photograpfse parameters might be chosen
more precisely if measurements of the trunk diameter at eoenwf levels were available.

The model developed in this paper makes it possible to oljtabe a lot of information about
the tensions based only on some measurements of the trumkegrge—without measuring the
actual forces nor mechanical properties of wood. A simpledehdescribed in [4] does not take
into account the slant of the trunk. Although it is also pbksito choose the parameters of that
model so as to approximate the trunk shape, the tensionmettasing the model described here
seem much closer to reality.
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