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ABSTRACT

A simple model of a tree trunk is described. Its purpose is to explain the shape of giant trees and to analyse
the durability of the trunk subject to the gravitation and wind forces. The model has the form of a nonlinear
integral equation, which may be solved numerically using the collocation method.

INTRODUCTION

This paper was inspired by the Giant Sequoia tree (Sequoiadendron giganteum) growing in Jasov,
a town in eastern Slovakia. The paper attempts to explain, why the trunks of giant trees have the
shape they have. The shape of any plant and its parts is the effect of the evolution, which forces
plants to make the best use of available resources, like water, nutrients in the soil and the sunlight.
There are also restrictions, of which here we pay attention to the mechanical durability of plant
organs. The durability of wood is of primary importance for the highest trees. A simple model of
a tree trunk presented in this paper is based on the assumption that during the strongest wind the
tree can resist, the maximal tension in the horizontal sections at all altitudes is the same. In this
way the material is used to build the tree trunk in an optimal way.

We consider only the forces caused by gravitation and wind. The model developed below is
based on a number of simplifying assumptions. One of them is the linear correspondence between
the tension and deformation of the material, widely known asthe Hooke’s law [1]. It is assumed
that mechanical properties of wood are the same in the entirevolume of the trunk. Only stretching
and compressing the fibres along the trunk axis are considered. It is assumed that the trunk is
a solid of revolution,i.e. each horizontal section is circular. The problem is to find the function,
whose graph is the generatrix of this solid of revolution.

Other assumptions are as follows: the distribution of the weight of branches along the trunk is
proportional to the distribution of the weight of the trunk itself. This assumption is of course not
true, but in case of the Giant Sequoia trees, like the one in Jasov, due to the shape of the crown
it seems not very distant from reality. Another assumption is about the distribution of the wind
force bending the trunk. Here we assume that the force per unit length is constant along the trunk.
Usually the wind speed increases with the altitude, but the highest branches are short.

The tree trunk may be bent by the wind and, if the trunk is not exactly vertical, also by the tree
weight. The general shape of trunks of trees at some age is an attribute of the species. Therefore
we assume that the parameterα, influencing the trunk shape, is the maximal slant for the species,
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and the angle of inclination of a particular tree may be someβ 6= α. The model makes it possible
to find the tensions also in this case.

FORCES IN THE TRUNK

The calculation in this paper is done using a Cartesian system of coordinates, whosex axis is
vertical (with0 at the ground level), they axis is horizontal and any slant of the trunk is oriented
towards the positivey halfaxis. Thez axis is perpendicular to the other two. To consider the max-
imal tensions we assume that the wind direction and orientation is that of the positivey halfaxis.

The trunk height is denoted byH . The horizontal section of the trunk at the levelx is a circle
K(x) of radiusr(x). Based on the assumption that the distribution of weight of branches along
the trunk is proportional to the distribution of the trunk weight (see Introduction), we can calculate
the weight of the part of the tree abovex as

S(x) =

∫ H

x

Dr2(t) dt,

whereD is a constant. The weight is balanced by the compressing tension σc, constant in the area
of the section, hence

σc =
S(x)

πr2(x)
=

D

πr2(x)

∫ H

x

r2(t) dt.

For each horizontal sectionK(x) we introduce a coordinate system(η, ζ), whose axes are
respectively parallel to they, z axes of the system defined above. For a beam (trunk), whose
section is changing slowly along its axis and which is made ofa material satisfying the Hooke’s
law, the tension caused by bending in thexy plane at the point(η, ζ) is proportional toη. Assuming
that the Hooke’s law is satisfied, the total moment of forces stretching and compressing the wood
fibres may be computed by integrating the moment of a linear functionσb(η, ζ)

M(x) =

∫

K(x)

ησb(η, ζ) dη dζ =

∫

K(x)

σbmax

r(x)
η2 dη dζ

=
σbmax

r(x)

∫ r(x)

0

(
∫ 2π

0

t3 cos2 θ dθ

)

dt =
π

4
r3(x)σbmax.

The symbolσbmax denotes the maximal compressing tension caused by bending in the section
area. The torque calculated above balances the sum of bending torques caused by the wind and
the gravitation.

With the assumption that the maximal wind force per unit length,F , is constant along the trunk,
the bending torque caused by the wind is

Mw(x) =

∫ H

x

F (t− x) dt =
1

2
F (H − x)2.

The assumption about the distribution of weight of branchesmakes it possible to calculate the
bending torque caused by gravitation

Mg(x) = D tanα

∫ H

x

r2(t)(t− x) dt.

We assume thatα is small, so thatsinα ≈ α ≈ tanα.
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THE MODEL

Trunk shape equation
The maximal stretching tension in the sectionK(x) is σc(x) − σbmax(x), while the maximal
compressing tension isσc(x) + σbmax(x); due to the orientation of the gravitation force, the
absolute value of the latter is greater. Therefore we assumethat the durability of the trunk is
determined by the limit of the compressing tension for the wood, which we denote byσmax.
The basic idea of the model is, that during the strongest possible wind the maximal compressing
tension for allx is equal to this limit. It is described by the following equation

σmax = σbmax(x) + σc(x) = σw(x) + σg(x) + σc(x)

=
2F (H − x)2

πr3(x)
+

4D tanα

πr3(x)

∫ H

x

r2(t)(t− x) dt +
D

πr2(x)

∫ H

x

r2(t) dt.

The functionsσw andσg describe respectively the maximal compressing tensions caused by the
wind and bending due to the trunk slant. It is convenient to replace the parametersF , D andσmax

by f = F/σmax andd = D/σmax. Let

nw(x) =
σw(x)

σmax
=

2f(H − x)2

πr3(x)
,

ng(x) =
σg(x)

σmax
=

4d tanα

πr3(x)

∫ H

x

r2(t)(t − x) dt,

nc(x) =
σs(x)

σmax
=

d

πr2(x)

∫ H

x

r2(t) dt.

The functions defined above describe respectively shares oftensions caused by the wind, bending
due to the trunk slant and compressing by the weight in the total maximal compressing tension at
the levelx. They are nonnegative and

nw(x) + ng(x) + nc(x) = 1 for x ∈ [0, H). (1)

Remark. This equation may be rewritten in the form

πr3(x) − d

∫ H

x

(

4 tanα(t− x) + r(x)
)

r2(t) dt = 2f(H − x)2.

A solution to be found must satisfy the boundary conditionsr(0) = r0 andr(H) = 0, wherer0
(radius of the section at the ground level) andH (trunk height) are obtained by measurement. The
parameterα, as explained in Introduction, is the maximal slant for the species. The parametersα,
f andd may be chosen in experiments, so as to obtain solutions whichdetermine shapes possibly
close to the shapes of trunks of living trees. The value off is related with the dimensionsH andr0
and by the sharenw0 = nw(0) of the tension caused by wind at the ground level. In experiments
one can take arbitrarilynw0 ∈ (0, 1) and compute

f =
πr0nw0

2H2
.

The value ofd must be chosen so as to obtain a functionr(x) satisfying (1)and the boundary
conditions; for the discrete model it is done by solving a system of nonlinear equations.

Discrete model and numerical algorithm
The numerical solution of (1) may be found using the collocation method [2] as follows. The
interval[0, H ] is divided toN parts, each of lengthh = H/N . The approximate solution,r(h)(x),
is assumed to be a continuous spline of degree1, whose knots are the numbersih, wherei =
0, . . . , N . The collocation at these knots yields the system of equations

n(h)
w (ih) + n(h)

g (ih) + n(h)
c (ih)− 1 = 0 for i = 0, . . . , N − 1. (2)
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Givenf , α and the boundary conditionsr(h)(0) = r0 > 0 andr(h)(H) = rN = 0, the unknown
quantities are the function valuesri = r(h)(ih) for i = 1, . . . , N − 1 and the parameterd. The
number of unknowns is thus equal to the number of equations.

With the assumed form of the numerical solution, the integrands in the expressions for shares
n
(h)
g (x) andn(h)

c (x) are quadratic or cubic polynomials in each interval[ih, (i+ 1)h]. Therefore
the integrals may be computed exactly using the Simpson’s quadrature [2]. Using it we obtain

aj
def
=

∫ (j+1)h

jh

(

r(h)(t)
)2

dt =
h

3
(r2j + rjrj+1 + r2j+1),

bij
def
=

∫ (j+1)h

jh

(

r(h)(t)
)2
(t− ih) dt

=
h2

3

(

(j − i + 1/4)r2j + (j − i+ 1/2)rjrj+1 + (j − i+ 3/4)r2j+1

)

.

Let

Ai
def
=

∫ H

ih

(

r(h)(t)
)2

dt =

N−1
∑

j=i

aj , Bi
def
=

∫ H

ih

(

r(h)(t)
)2
(t− ih) dt =

N−1
∑

j=i

bij .

Using these symbols, the system (2) may be rewritten in the form

gi(r1, . . . , rN−1, d) = 0, i = 0, . . . ,N − 1, (3)

where

gi(r1, . . . , rN−1, d)
def
=

2f
(

(N − i)h
)2

πr3i
+

4d tanα

πr3i
Bi +

d

πr2i
Ai − 1.

The system (3) may be solved using the Newton’s method. The necessary derivatives of the func-
tionsgi are

∂gi
∂rk

= 0 for k = 0, . . . , i− 1,

∂gi
∂ri

=
−6f

(

(N − i)h
)2

πr4i
+

4d tanα

πr3i

(

∂Bi

∂ri
−

3

ri
Bi

)

+
d

πr2i

(

∂Ai

∂ri
−

2

ri
Ai

)

,

∂gi
∂rk

=
4d tanα

πr3i

∂Bi

∂rk
+

d

πr2i

∂Ai

∂rk
for k = i+ 1, . . . , N − 1,

∂gi
∂d

=
1

πr2i

(

4 tanα

ri
Bi +Ai

)

.

To the formulae above we substitute
∂Ai

∂ri
=

∂ai
∂ri

=
h

3
(2ri + ri+1),

∂Bi

∂ri
=

∂bii
∂ri

=
h2

6
(ri + ri+1),

and fork > i

∂Ai

∂rk
=

∂ak−1

∂rk
+

∂ak
∂rk

=
h

3
(rk−1 + 4rk + rk+1),

∂Bi

∂rk
=

∂bi,k−1

∂rk
+

∂bik
∂rk

=
h2

3

(

(k − i− 1/2)rk−1 + 4(k − i)rk + (k − i+ 1/2)rk+1

)

.

The derivative matrix of the vector functiong made ofg0, . . . , gN−1 is upper Hessenberg [2].
Its coefficients may be computed efficiently, using the formulaeAN = BN = 0 and

Ai = ai +Ai+1,

Bi = bii +Bi+1 + hAi+1 for i = 0, . . . , N − 1.
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The initial point for the Newton’s method (good enough for all experiments made by the author)
may consist of the numbersr(0)i = r0(N − i)/N (these numbers describe a cone) and the number

d(0) = 3
πr30 − 2fH2

Hr20(H tanα+ r0)
,

obtained by solving the equationg0(r
(0)
1 , . . . , r

(0)
N−1, d) = 0.

EXPERIMENTS AND CONCLUSIONS

The dimensions of the Giant Sequoia in Jasov were measured inAugust 2012 [3]; the height of the
tree was47.7m and the girth of its trunk,1.3m above the ground level, was7.42m. The parameters
taken for the numerical experiments wereH = 47.7, r0 = 1.1 andN = 1024.

Solutions were found for four values ofnw0 and four anglesα. Some results of the 16 experi-
ments are gathered in Table 1. Its last three columns show theshares of the tensions at the ground
level. Figure 1 shows the graphs of the solutions; to improvethe visibility of the influence of the
parameters on the solution, different scales were assumed for each axis.

Table 1. Parameters of numerical solutions and shares of tensions at the ground level

α f [m] d [m−1] nw0 ng0 nc0

0◦ 4.594 · 10−5 0.2731 0.05 0 0.95
0◦ 9.189 · 10−5 0.2263 0.1 0 0.9
0◦ 1.838 · 10−4 0.1740 0.2 0 0.8
0◦ 3.676 · 10−4 0.1121 0.4 0 0.6

0.5◦ 4.594 · 10−5 0.1942 0.05 0.2308 0.7192
0.5◦ 9.189 · 10−5 0.1620 0.1 0.2318 0.6682
0.5◦ 1.838 · 10−4 0.1246 0.2 0.2187 0.5813
0.5◦ 3.676 · 10−4 0.07954 0.4 0.1740 0.4260

1◦ 4.594 · 10−5 0.1515 0.05 0.3737 0.5763
1◦ 9.189 · 10−5 0.1265 0.1 0.3697 0.5303
1◦ 1.838 · 10−4 0.09711 0.2 0.3437 0.4563
1◦ 3.676 · 10−4 0.06165 0.4 0.2697 0.3303

2◦ 4.594 · 10−5 0.1054 0.05 0.5388 0.4112
2◦ 9.189 · 10−5 0.08804 0.1 0.5252 0.3748
2◦ 1.838 · 10−4 0.06742 0.2 0.4811 0.3189
2◦ 3.676 · 10−4 0.04253 0.4 0.3721 0.2279

0

H x

0 r0

nw0 = 0.05

α = 0◦
α = 2◦

0

H x

0 r0

nw0 = 0.1

α = 0◦
α = 2◦

0

H x

0 r0

nw0 = 0.2

0

H x

0 r0

nw0 = 0.4

Figure 1. Graphs of numerical solutions.

As one can see, the influence of the parameterα on the trunk shape decreases with growth of
the reserve of durability for strong winds.
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Figure 2 shows graphs of the tensionsσw, σg andσc for a trunk, whose shape corresponds to
the parametersα = 1◦ andnw0 = 0.1. The graphs on the left side show the case ofβ = α. On
the right side one can see what happens when the trunk inclination angle is smaller thanα.
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Figure 2. Maximal compressing tensions along the trunk.

Figure 3 shows the tensionsσw(x), σg(x) andσs(x) and their sums when the wind force
exceeds the limit by10% and by20%. As one can see, it is most likely that the trunk breaks close
to the top, which ensures some protection to the lower part ofthe tree. This observation, in the
author’s opinion, provides a justification for the model.
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Figure 3. Maximal compressing tensions for the wind too strong.

In the experiments described above the parameters of the model were chosen so as to obtain
solutions which look like the tree from Jasov on photographs. The parameters might be chosen
more precisely if measurements of the trunk diameter at a number of levels were available.

The model developed in this paper makes it possible to obtainquite a lot of information about
the tensions based only on some measurements of the trunk geometry—without measuring the
actual forces nor mechanical properties of wood. A simpler model described in [4] does not take
into account the slant of the trunk. Although it is also possible to choose the parameters of that
model so as to approximate the trunk shape, the tensions obtained using the model described here
seem much closer to reality.
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