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ABSTRACT
Quadratic stochastic operators can exhibit a wide variegsgmptotic behaviours and these have been in-
troduced and studied recently. In the present work we désbimdogical interpretations that can be attributed

to them. We also propose a computer simulation method tstiite the behaviour of iterates of quadratic
stochastic operators.

INTRODUCTION

The study of nonlinear Markov evolution has become a sulgriterest due to its applications
which include population and disease dynamics, physiaduggnary biology and economic and
social systems. One of the simplest but still nontrivialrapées of nonlinear dynamics is the
quadratic one. Quadratic stochastic operators were firgidnced by Bernstein [1] to describe
the evolution of a distribution of classes of individual®( groups of individuals possessing a
particular trait) in a population. Since then the theorydegeloped in different directions and has
the potential to be an important tool in modelling variougipbmena.

We begin by defining a quadratic stochastic operator. L&t the Banach space of all ab-
solutely summable or finite real sequenges= (z;);>1 (i.e. X = ¢ or X = ¢} = R?in the
d—dimensional case) equipped with the standard rgtfn = ijl |;|. Following [2],

Definition 1. A quadratic stochastic operat®® is defined as a cubic array of nonnegative real
numbersg;; «li,;,k>1 (infinite when¥X = 2 or [9i5,k)1<i,5,k<d (in thed—dimensional case when
X = () if it satisfies

(D1) 0 < qijr = qjipe < 1foralld, j,k > 1,

(D2) >°,_1 aij,x = 1 forany pair(i, j).
The family of all quadratic stochastic operators is dendtgd.

Every cubic matrixQ € Q may be viewed as a bilinear mappiy: X x X — X if we set
Q(z,y)x = >, j=1 TiY;gij foranyk > 1. Clearly,Q is monotoneie. Q(z, y) > Q(u, w)
whenever > v > 0 andy > w > 0) and bounded asip |, 1, <1 1Q(z,»)|l = 1.
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LetD = {z € X : z; > 0,5 ,_,z; = 1}, i.e. D is the set of all probabilistic vectors
(distributions)z € X. Clearly, ifz,y € D, then Zm,:l xiY;qijk > 0 foranyk > 1 and
D ket Zi,j:l xiYiqij e = 1. Thus,Q(D x D) C D. Hence the quadratic stochastic opera-
tor Q has an immediate biological interpretation. Byandy € D we denote the distribution
of a discrete trait€.g.allele) of two different populations._TheQ(g, y) is the distribution of
that trait in the offspring coming from the mating of indivials descending from the differ-
ent populations. The special case of inbreeding arises wheny, i.e. a nonlinear mapping
D>z~ Q(z) :=Q(z,z) € Dis being considered. The@(z) represents the trait distribution
in the next generation if € D is the trait distribution in the parents’ generation. Thiieag;;
are sometimes called the heredity coefficients and cornesmmprobabilities of obtaining an in-
dividual of clasg: as a result of mating two individuals of clasgesd;. In this simplified model
the iteratesQ™(z), wheren = 0,1, ... , describe the evolution of the distribution of a discrete
trait in a population.

Direct applications of quadratic stochastic operatorsaiien their infancy but [3-5] can serve
as examples. These works illustrate both the usefulnesgamfrgtic stochastic operators and the
complexity of applying them. In [4] a framework for descrigia single gene following Mendelian
evolution is provided. In [3] (see also [5]) the authors mdtle heredity of blood groups and
the Rhesus factor. The coefficients . (¢, 5,k > 1) of Q(-,-) are obtained from observing the
blood groups of parents and their children but only poinhestes are provided. Propagation of
statistical uncertainty with the number of generationsreet be an open research direction. It
would be interesting to study it as in the above mentionedwome coefficients that should be
due to the Mendelian laws of heredity holding for this trait slightly greater that (mutations
being a possible explanation).

CONVERGENCE OF QUADRATIC STOCHASTIC OPERATORS

One of the fundamental issues is the study of the asymptetiawiour of iterates of quadratic sto-
chastic operators. Even if we focus on the case of inbreettiegporoblem is not easily tractable
because of the nonlinearity. It is possible to obtain a limaadel by considering nonhomoge-
neous chains of stochastic operatdirs, a sequencéP[”’"H])nZO of positive linear operators
plnntil on % preservingD (simply definepnt+i .= [prrtl], -, where for any integer

numbern > 0, pprt!t > 0and). _, pprt!t = 1foranyr > 1, and PI™" 1 acts onx by
(Plrntlg), =37 ) zplnt!). Following [2] we consider

Definition 2. Given a quadratic stochastic operat@ and any initial distributiony € D, a non-
homogeneous Markov chain associated @fand a seed: € D is defined by

n,n _ n,n+1 _ n
Pt — [pyk LJ@ = [Q(Q (@), e)k|

J,k>1

wheree; = (0k,j)k>1-

It is easy to see that for any > 0 we havePl™" Q" (2)) = Q"*+'(z) = P*" (), hence
the iterates of) can be defined as a nonhomogeneous Markov chain with t@mgtbbability
matrix [p;7f '] k1 at the instant.

In [2] the authors introduced different types of asymptbghaviours of a quadratic stochastic
operator depending on the mode of convergence of its iteate expressed them in terms of
convergence of the associated (linear) nonhomogeneousMahain. This allows us to study
the limit properties of a quadratic stochastic operatorfgylyng the theory of nonhomogeneous
Markov chains. A detailed study of relevant asymptotic lvédhars of nonhomogeneous Markov
chains can be found in [6, 7]. Since the contents of [2] alietitibased on mathematical theory
and methods, in this paper we give their biological intetqtiens, as well as illustrating them with
computer simulations.
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Following [2] we consider

Definition 3. A quadratic stochastic operat@ is called:
(1) norm mixing (uniformly asymptotically stable, uniformégular) if there exists a proba-
bilistic vectorp* € D such that
Jim_sup[|Q”(z) —p7]l, =0,
(2) strong mixing (asymptotically stable, regular) if therést a probabilistic vectop* € D
such that for alle € D we have
lim {|Q"(z) - p*|, =0,

n— oo

(3) strong almost mixing if for alk, y € D we have
Jim Q") - Q") =0.

Notice that different definitions of mixing have differeniblogical interpretations. All notions
mentioned above are in a sense related to the case of inbge®trm mixing may be understood
as a situation in which the population is completely isaldtem other populations and the trait
distribution stabilizes with the passage of time. The sammrpretation has the property of strong
mixing. Even though these two types of mixing are matheraliyiwery different (strong mixing

is essentially weaker than norm mixing), biologically thegve a similar meaning. However,
strong almost mixing describes the evolution of two popatet placed in the same environmental
conditions {.e. the law of the evolution given b@) is the same). Each one of them can have
an arbitrary initial trait distribution and the differenbetween these distributions vanishes with
the passage of time. Another type of asymptotic behaviothénclass of quadratic stochastic
operators can be introduced by using the associated Mahamag as followsdf. [2]):

Definition 4. We say thaf) € Q is norm quasi—mixing if

i sup [P - PRI 0.

N0 gy, veD

The norm quasi—mixing property has a slightly more subtiddgjical interpretation. First, let us
take a closer look a@o’"] (u). Expanding the iterations of the associated Markov opevetayet

PE[O’”] (ﬂ) — ngn—l,n] (PgL_Q’n_l](- . (Pg[071] (ﬂ)) . ))

=Q(Q" Mz), QQ" *(2), Q(--- (Q(Q(z), Q(z, w))) - -)))-

Imagine two populations (placed in the same environmemtatlitions) with initial trait distri-
butionsz andw respectively, living on patches of habitat connected by enoent of individuals
only from the first patch to the second. Then after one timp ate observe inbreeding on the
first patch and mixing of two populations on the second patdurs by mating the individuals
from the second location with immigrants coming from thet fse. HenceDz[O’”] (u) represents
the trait distribution in thex-th generation living on the second patch, whose memberthare
offspring of immigrants from the first patch (constant irdating and trait distributio®” ! (z)

at instant: — 1) and inhabitants of the second patch (mating with immigrémam the first patch
at each time step and trait distributi@(Q"2(z), Q(- - - (Q(Q(z), Q(z,w)))---)) at instant

n — 1). Now, to give the interpretation of norm quasi—mixing,ustassume that we observe three
populations with initial trait distributions, v andv respectively, living on three patches of habitat
connected by movement of individuals only from the first patcthe second and third (no other
interaction is allowed). As before, inbreeding on the firstch takes place and we notice mating
of individuals from the second and the third patch with imraiggs coming from the first patch.
Norm quasi—mixing may be understood as a situation in whiehdifference between the trait
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distributions of the populations living on the second arelttiird patch vanishes with the passage
of time. This however does not imply the stabilizatiom.( convergence) of these distributions,
but solely says that even if these distributions are strofigttuating, they will be fluctuating in
the same way with the passage of time (the difference betttesn will be decreasing to zero).

SIMULATING A QUADRATIC STOCHASTIC OPERATOR

Simulating a movement of a particle among its possible stetestraightforward (setting aside
numerical issues) if it is determined by a linear homogeséddarkov chain. Simply, one updates
the current value (state of a particle) according to the ghdlty law that it indicates. The idea
of how to simulate the movement of a particle governed by aratir stochastic operator is not
immediate. A pair of values indicates the probability lamegeating a single value. The question
then becomes how to arrive at two values of the trajectoretegate the new one and how to get
the next one. It is much easier to obtain (and to simulate ribv@ probability distribution on a
state space.€. a space of all possible values or, in a biological approasipaze of all possible
phenotypes) at each discrete time momenGiven an initial distributiory € D, by its trajectory
we understand the sequen@®@” (y))»>o0. Hence, one needs to iteratdimes the operato@(-)
and then draw from the resulting distribution. Most of thertature uses the phrase “simulating”
a quadratic stochastic operator in this ser$d4, 8]). Probability distributions at each generation
are found numerically and the trajectory of the initial dimsition as a function of time is presented
(seee.g. Fig. 2). This however is not simulating a trajectory of thegess itself. It would be
desirable to observe particles behaving according to tlaetic stochastic operator. Therefore
we propose a procedure, described in Algorithm 1, to siraudatrajectory ofy € D. We would

Algorithm 1 SimulatingQ(y)

Draw N independent individuals according to the lawyadnd call themP,
for i = 1ton do -
Pi = @
for j =1to N do
Draw a pair( f;, m;) of individuals from populatiorP; _;
Draw an individualZ; according to the law oQ(ey; , e )
P = P,U{Z;}
end for
end for
return Py, Py,..., P,

expect that at théth step of Algorithm 1 the trait in populatiaR should be distributed according
to Q(y). In fact, if we look at Fig. 1, left panel, this is the case. Hwer, in the right panel we
can see an example exception, wi@nestricted taD possesses absorbing distributions. In such
a case a trajectory has to (with probabilifysooner or later fall into one of the absorbing states.
The absorbing states of the identity operator consideré&iginl (right panel) are; = (1,0) and
es = (0,1). The probability (at iteratio) that the trajectory will end at; (i = 1,2) equals
yi, Wherey = (y1,y2) is the initial distribution. We can also notice two other jpecties of the
trajectories in Fig. 1: the trajectory rapidly approachesstationary distribution and also rapidly
falls into the absorbing state.

Another interesting example arises in the class of the dleecdolterra operators,e. the class
of suchQ = [gijkli,je>1 € Qthatg;, = 0if k ¢ {i,5} for anys, j,k > 1. On the basis
of numerical calculations, S. M. Ulam [9] conjectured thatt the Volterra operato® the limit
limy,— 00 % EZ;; QF(y) exists for anyy € D. It was shown to be false by Zakharevich in [10].
Namely, he proved that fa@ € 9 defined or2—dimensional simplex byi1 1 = g22.2 = g33.3 =
Q12,1 = g23,2 = q13,3 = 1, the Cesaro means diverge for every interior pgird D (except the
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Figure 1. Simulating a quadratic stochastic operator a@iegrto Algorithm 1 (“pop-
ulation simulation”, number of individual® = 10000), numerically calculating the
distribution (“ ;”)”) and sampling fromQé'” at each generation. Each point of the
line “sampling fromQ{"" is an average ofl0000 random values drawn from the
numerically caIcuIate(DSJ"). Each graph presents all valugsitf the left panel2 in the
right panel) of the simulated probability vector by the itist lines.

Left: Q € 9 defined on3—dimensional space byji1,1 = ga22 =1, qi3,3 =1,
q12,1 = @232 = %, q12,3 = Q23,3 = i, Y= (0.1,0.2,0.7),
p* = (0.333,0.003, 0.664).

Right Q € O defined on 2—dimensional space bygqiii1 = g2 =1,
q121 = qi22 = 3, y = (0.75,0.25). Here Q is the identity operator and every
initial distribution is a fixed point of) (hence there is no stationary distribution).

1
Q33,1 = (33,3 = 35,
2

fixed point(%, %, %) ). This is because the trajectory of any interior initialtdisution (different

than the fixed point) spirals out approaching arbitraritysel to the boundaries of the simplex, but
never reaches itf. Fig. 2) and the number of times that it spends close to thesmuise vertices
of the simplex increases rapidly (see also [11, 12]). In,faatas shown in [13] that the iterates
of any Q((y1,y2,¥3)) = (y1(1 + ay2 — bys),y2(1 — ay1 + cy3), z3(1 + byr — cyz2)), where
—1 < a,b,c < 1are nonzero and have the same sign, possess this property.
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Figure 2. The evolution of the probabilistic vectgion a2 - dimensional simplex ac-
cording toQ((y1, y2,y3)) = (y1(1+ayz —bys), y2(1—ay1 +cys), z3(1+by1 —cyz)).
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Left: Zakharevich's example [10l.e.a =b=c =1,y = (0.33,0.33,0.34).
Right a =b=c=—1,y = (0.33,0.33,0.34).
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FINAL REMARKS

A practitioner could readily say that the asymptotic dgg@ns presented here are trivial in the
sense that this is how one would expect a sensible repredugsyistem to behave. Quadratic
stochastic operators offer a framework for a formal matherabkdescription of this behaviour
and they could be used to test whether the population is lredha@as expected. For example,
we would expect that if two populations live in the same emwimental conditions, they become
similar after a number of generations (strong almost mikibgt they do not. Is this just a result
of random fluctuations (due ®.g. sample size) or is there some unobserved variable? Siwilarl
we would expect a population to converge to a given distidiou¢strong and norm mixing) and
one could ask if the deviation is statistically insignifitanif one has missed some factor.

Our work also provides a new direction of study regarding kmeffectively simulate particles
following a quadratic stochastic operator and what thetgtetic properties of Algorithm 1 are.
We wrote that we would expect at each iteration the partiofaitation to be distributed according
to Q" (y). However, the finite population size causes dependencteebr pairs€.g. the same
pair could be sampled more than once) and this could resuleumations from the theoretical
distribution. Another problem is to characterize the béhawof the population with an absorbing
set of distributions.
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