

Wikno, 16th–20th September 2025

ON INSTABILITY OF PREY-PREDATOR SYSTEM

Zbigniew Peradzyński

Military Technological University, Warsaw

ABSTRACT

In this paper, we consider a specific prey-predator system with convective terms in one spatial dimension, $x \in [0, L]$

$$N_t + (NV)_x = -\alpha Nn,$$

$$n_t + (nv)_x = \beta Nn.$$
(1)

We assume that there exists $a \in [0, L]$ such that $v_x < 0$ on [0, a) and $v_x > 0$ on (a, L], so that v(a) = 0. For simplicity, we assume that V is constant. Under these conditions we need only one boundary condition at x = 0, i.e.

$$N_t(0) = N_0$$
.

Assuming high typical mobility of the predator, we can separate the evolution time scales and introduce a small parameter. Roughly speaking, this means that $1/\alpha$ is large. We show that, to good approximation, the system can be reduced to a single linear partial differential equation for N and an ordinary differential equation for J(t):

$$N_t + (NV)_x = -R(x)N,$$

$$\frac{d}{dt}J(t) = \lambda J(t),$$
(2)

where $-\lambda$ is an eigenvalue of the operator

$$\mathcal{L}(t) = v(x)\frac{d}{dx} + v_x + N(t, x),$$

which depends parametrically on t.

The system (2) is much easier to analyze. In general, it has oscillatory solutions. For large β it is possible to find an analytical form of these solutions.