Wikno, 16th–20th September 2025 ## A CONTINUOUS-TIME S IS CRISS-CROSS MODEL OF CO-INFECTION IN A HETEROGENEOUS POPULATION ## Marcin Choiński Institute of Information Technology, Warsaw University of Life Sciences Nowoursynowska St. 159, building 34, 02–776 Warsaw marcin_choinski@sggw.edu.pl ## **ABSTRACT** In a population we indicate two subpopulations, a low-risk (LS) and a high-risk (HS) subpopulation, that relate to the risk of getting infected. LS and HS have accordingly lower and higher susceptibility to each disease. For every variable and parameter we assign a subscript i equal to 1 and 2 for LS and HS, respectively. If i has no assigned value, then $i \in \{1, 2\}$. By S_1 and S_2 we denote a density of healthy people in LS and HS, respectively. The variables I_i mean a density of individuals from the given subpopulation that are infected by a pathogen of disease which we call disease A(DA). Similarly, we define J_i as a density of individuals suffering from disease B(DB). A density of a group infected by pathogens from both diseases is denoted by K_i . Migrating and newborn individuals join each subpopulation through S_i class with a recruitment rate C_i . A natural death rate for each subpopulation is equal to μ_i . For DA we introduces transmission rates: β_{11} , β_{22} , β_{12} , β_{21} reflecting transmission: among LS, among HS, from HS to LS and from LS to HS, respectively. Indicating four different rates means that DA differs in spreading and contracting a pathogen. To get a preliminary insight on co-infection dynamics for the heterogeneous population, for DB we assume that individuals differs only in contracting a pathogen. For this reason we take only two transmission coefficients for DB: σ_1 for LS and σ_2 for HS. By γ_i and g_i we denote a recovery rate for DA and DB, respectively. The disease–mortality rate for DA and DB is depicted by α_i and a_i . The proposed model of co-infection reads $$\dot{S}_1 = C_1 - \beta_{11} S_1 I_1 - \beta_{12} S_1 I_2 + \gamma_1 I_1 - \mu_1 S_1 - \sigma_1 S_1 (J_1 + J_2) + g_1 J_1, \tag{1a}$$ $$\dot{I}_1 = \beta_{11} S_1 I_1 + \beta_{12} S_1 I_2 - (\gamma_1 + \alpha_1 + \mu_1) I_1 - \sigma_1 I_1 (J_1 + J_2) + g_1 K_1, \tag{1b}$$ $$\dot{J}_1 = \sigma_1 S_1 (J_1 + J_2) - (g_1 + a_1 + \mu_1) J_1 - \beta_{11} J_1 I_1 - \beta_{12} J_1 I_2 + \gamma_1 K_1, \tag{1c}$$ $$\dot{K}_1 = \sigma_1 I_1 (J_1 + J_2) + \beta_{11} J_1 I_1 + \beta_{12} J_1 I_2 - (g_1 + a_1 + \gamma_1 + \alpha_1 + \mu_1) K_1, \tag{1d}$$ $$\dot{S}_2 = C_2 - \beta_{22} S_2 I_2 - \beta_{21} S_2 I_1 + \gamma_2 I_2 - \mu_2 S_2 - \sigma_2 S_2 (J_1 + J_2) + g_2 J_2, \tag{1e}$$ $$\dot{I}_2 = \beta_{22} S_2 I_2 + \beta_{21} S_2 I_1 - (\gamma_2 + \alpha_2 + \mu_2) I_2 - \sigma_2 I_2 (J_1 + J_2) + g_2 K_2, \tag{1f}$$ $$\dot{J}_2 = \sigma_2 S_2 (J_1 + J_2) - (g_2 + a_2 + \mu_2) J_2 - \beta_{22} J_2 I_2 - \beta_{21} J_2 I_1 + \gamma_2 K_2, \tag{1g}$$ $$\dot{K}_2 = \sigma_2 I_2 (J_1 + J_2) + \beta_{22} J_2 I_2 + \beta_{21} J_2 I_1 - (g_2 + a_2 + \gamma_2 + \alpha_2 + \mu_2) K_2. \tag{1h}$$ Each parameter is fixed and positive. In particular, every parameter besides C_i is in the range (0, 1). Figure 1 is a schematic drawing of the proposed model. Figure 1. Possible movements between particular classes from system (1). System (1) has four stationary states: disease–free (E_{df}) , with sole DA or DB $(E_A$ and $E_B)$. We also suspect that there exists the endemic state (E_e) , with two diseases present, exists, but we did not manage to prove it because of complicated computations. State E_{df} has the form $$E_{df} = (\widehat{S}_1, 0, 0, 0, \widehat{S}_2, 0, 0, 0), \text{ where } \widehat{S}_1 = \frac{C_1}{\mu_1}, \widehat{S}_2 = \frac{C_2}{\mu_2}.$$ It exits unconditionally, while provided conditions determine the existence of E_A and E_B . For state E_e we only gave insight into its existence because of the complexity of the computations. For system (1) we computed the basic reproduction number \mathcal{R}_0 . This number can be written as $$\mathcal{R}_0 = \max(\lambda_1, \lambda_2),$$ where $$\lambda_1 = \frac{\sigma_1}{q_1} \widehat{S}_1 + \frac{\sigma_2}{q_2} \widehat{S}_2, \qquad q_i := g_i + a_i + \mu_i$$ and $$\lambda_2 = \frac{1}{2k_1k_2} \left(k_2 \beta_{11} \widehat{S}_1 + k_1 \beta_{22} \widehat{S}_2 + \sqrt{(k_2 \beta_{11} \widehat{S}_1 - k_1 \beta_{22} \widehat{S}_2)^2 + 4k_1 k_2 \beta_{12} \beta_{21} \widehat{S}_1 \widehat{S}_2} \right),$$ where $k_i := \gamma_i + \alpha_i + \mu_i$. Later we investigated the local stability of the stationary state. State E_{df} is locally stable if $\mathcal{R}_0 < 1$, what is expected. Analysis of the local stability for E_A and E_B provided the list of conditions. What is important is that the parameters from both diseases affect the local stability of both states. ## REFERENCES [1] M. Bodzioch, M. Choiński, and U. Foryś: *SIS criss-cross model of tuberculosis in heterogeneous population*, Discrete and Continuous Dynamical Systems – B **24** (2019), 2169–2188.