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ABSTRACT 

 

The paper presents the idea of applying maximum entropy principle MEP and statistical physics methodology 

in clustering for segmentation of multimodal medical images. The MEP clustering methods are compared 

with clustering algorithms which base on fuzzy and possibilistic approach. The paper shows that the fuzzy 

and possibilistic approach is equivalent to MEP for some special conditions e.g. without normalization 

constraint. The considerations in this field allow better understanding of the application of MEP in clustering 

and are exemplified by results of MRI images segmentation using the all mentioned techniques.  

 

INTRODUCTION  
 

The clustering is still a developing technique which is applied in image segmentation. There are 

many clustering methods and many of them are used in the area of medical images segmentation 

“[2], [5], [7], [10], [11], [12], [13], [16], [18]”. The leading role in clustering is playing by 

algorithms based on statistical physics with using maximum entropy principle MEP (“[17], [20], 

[21]”). Many researches are still performed to solve theoretical and practical aspects of applying 

MEP in clustering (see e.g. “[20], [21]”). In medicine at present there is a big development of new 

imaging technologies like CT, MRI, SPECT or PET. The physician who interprets a medical image 

must recognize all anatomical structures and find any abnormality. The problem is that physicians 

are very efficient in interpretation of one image but their ability fall down significantly while they 

have to interpret two or more images represented the same section at the same time. This problem 

can be solved using multimodal imaging techniques “[2], [4], [8]”.  

 

 FORMULATION OF CLUSTERING PROBLEM   
 

The classical clustering problem “[1], [6]” consider the set  consists of n date vectors and a set Y 

of c clusters represented by their centroids  
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For each data point i the normalization condition is usually demand  
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where pij  p(xi  clusterj) is the probability that a data point xi  belongs to a cluster j. The local 

energy (cost function, similarity measure) is introduced as a function Eij  E(xi  clusterj) of 

association data point x
i
 to the cluster j. Then the total averaged energy is  
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The classical “hard” c-means HCM algorithm can be found as optimization of the objective 

function “[1], [6]” in the form  
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In turn the fuzzy clustering methods “[1], [3], [6]” base on a concept of fuzzy partition of the data 

set. For fuzzy approach, an objective function was defined as “[3]”: 
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where m is a weighting exponent, m[1,), dij is a distance of the given vector xi to the centroid 

yj of cluster j and v  Mfc  is the fuzzy c-partition of the data set  which have following properties  
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The essence of the fuzzy c-mean algorithm FCM is the theorem of Bezdek “[3]” which formulates 

the FCM algorithm as iterations of the fuzzy cluster centroids by formula 
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for  j=1,.....,c  with new matrix vij calculated by 
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The FCM algorithm reduces to HCM algorithm for m1 and dij taken as Euclidean distance. The 

FCM algorithm was criticized because of the condition “Eq. (8)” that makes membership 

coefficients similar to probabilities. Only possibilistic approach can be considered as a fully fuzzy. 

The essence of the possibilistic approach “[9], [10]” lays in ignoring the constraint Eq. (8). The 

objective function for a possibilistic approach in clustering was formulated as “[9]”  
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where  j  are positive numbers. Optimizing over “Eq. (12)” leads to the following equation for 

vij  
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In “[10]” there was an alternative formulation of the possibilistic objective function  
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Performing the optimization of Eq. (14) is giving the following solution  
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MAXIMUM ENTROPY PRINCIPLE IN CLUSTERING  
 

For classically formulated clustering problem “[17], [19], [20]” the entropy is 
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where the summation is performed over all the clusters and all the data points. The entropy “Eq. 

(16)” can be maximized under constraints: normalization conditions Eq. (2) and the given 

expectation value of energy “Eq. (3)”. The full entropy “Eq. (16)” can be written as the sum of 

partial entropies considered for different data point xi (where i1,.....,n). The corresponding 

Lagrangian function of this problem can be written also in this way   
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where Li are partial Lagrangian functions. Usually the assumption that the probabilities relating 

different xi to their clusters are independent is taken. Then the full optimization can be done by 

optimization of each partial Lagrangian function separately. The result of this optimization gives 

the Gibbs distribution  
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where Zi is a partial partition function. In statistical mechanics, the Lagrange multiplier  is 

interpreted as the inverse of temperature T (1/T). The total free energy is then  
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It can be demonstrated that 
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find the solution of the constrained minimization of E by performing so called Deterministic 

Annealing on F as first proposed by Rose, Gurewitz and Fox “[17]”. The general concept of 

annealing is to track the global minimum of F while increasing . In the classical approach, the 

energy is described as Euclidean distance between data points xi and the cluster centroids yj (Eij  

dij  d(xi,yj)  |xi - yj|2) and then from “Eq. (18)” the association probabilities are 
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and corresponding free energy is 
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Then the variational free energy minimization method can be used “[12], [14]”. It takes the set of 

cluster representatives Y (see Eq. (1)) as parameters. It is obtained eventually  
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what naturally leads to fixed-point iterations based on “Eqs. (20), (22)”.  

 

MAXIMUM ENTROPY PRINCIPLE IN CLUSTERING WITHOUT 

NORMALIZATION CONSTRAINT 
 

For the case without a normalization constraint the Lagrangian function will be as following 
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Because there are no normalization constraints instead of symbol pij the symbol of generalized 

probability uij will be used. Optimization over partial Lagrangian gives 
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Then a full free energy is  
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The full free energy is going to zero while   . Taking into account “Eq.(25)” one obtains  
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In this place the question appears: how to interpret the above results? Considering the general 

solution of maximum entropy principle gives “Eq. (20)” in the form 
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Let us express an energy in logarithm way  )(Elog)(E i
β
jij xx   and introduce the parameter m by 
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Now the final form of uj(xi) appears to be equivalent to this which was obtain in a FCM algorithm 
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Using regularization theory in optimization problems is nowadays the classical approach to ill-

posed problems (see e.g. “[15]”).  In this approach, the standard FCM and MEP methods can be 

considered as different types of regularization for the classic HCM algorithm. Let us now consider 

the MEP optimization problem from the regularization theory point of view. First of all, find that 

now in “Eq. (17)” values of <E> and 1 are constant hence after some transformations Lagrangian 

function “Eq. (17)” can be formulated as 
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where a new constant  is a result of dividing an old value by . It leads us to a conclusion that 

there is a possibility of such interpretation where a main term of the Lagrangian function is an 

energy, not an entropy. From the mathematical point of view, it is the same to optimize the entropy 

with normalization and energy constraint and to optimize the energy with normalization constraint 

and constraint for entropy. The second approach is not easy to explain. The entropy is a function 

of the probability distribution and this approach can be interpreted as the minimization of the 

energy with an entropy constraint on probability distribution. From the regularization theory point 

of view in MEP approach the energy should correspond to classical „error” term and the entropy 

(and other normalization term) should correspond to „regularization” terms. Find also that the 

Lagrangian function for the clustering problem where entropy is given by “Eq. (17)” can also be 

written in the form where entropy is one of regularization terms 
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Taking into account the above considerations the following schema of the clustering algorithms is 

proposed. 

 Classical HCM algorithm of clustering can be considered as the optimization of the objective 

function in the form  
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 The MEP algorithm of clustering with constraints can be considered as the optimization of 

the objective function 
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With an assumption that the probabilities relating different xi to their clusters are independent, the 

solution gives here the Gibbs distributions and finally one obtains a deterministic schema. 

 The FCM algorithm of clustering can be considered as the optimization of the objective 

function in the form 
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This is an example of nonlinear regularization. It introduces nonlinearity in the „error” term of 

objective function. Taking into account the equivalence of MEP and FCM one can find here the 

possibility of preparing the deterministic annealing. Find that from “Eq. (28)” we have m = 2/β + 
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1 = 2T + 1. When       then   m  1 and when     0   then   m  . This gives the possibility 

of the deterministic annealing for FCM algorithm by going with m from  to 1 (see e.g. “[3]”). 

 The possibilistic PCM algorithm can be considered as the optimizing of the objective 

function  
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and taking into account that  each cluster is independent of the other clusters the optimization is 

performing over each objective function corresponding to the given cluster j 
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Find that in the MEP Lagrangian function “Eq. (33)” a term corresponding to the normalization 

constraint has its own separate Lagrangian multiplier.  In possibilistic approach there are the same 

multipliers for the given energy and normalization terms. Considering a function “Eq. (35)” and 

making some transformations the possibilistic objective function can be expressed as  
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what corresponds to MEP Lagrangian function “Eq. (35)” without a normalization constraint.  

 

RESULTS 
 

Using p different imaging methods (e.g. PET and CT in scanner PET/CT or three MRI modes PD, 

T1 and T2) of the same given structure give us the possibility of using multimodal image 

techniques. Multimodal image is the set of p images representing different physical and chemical 

properties of the same cross-section. In multimodal image each pixel has p corresponding values 

of it intensity in successive image modes. The multimodal image creates p-dimensional feature 

space considering each mode as one feature “[4], [8]” where clustering is performed. After 

clustering the labelling of successive clusters give a final segmentation. After segmentation, a 

physician instead of two or more images of the same cross-section obtain one segmented image 

which contain all information from all modes.  Figure 1 presents the results the two-modal MRI 

image segmentation with visible tumor for four clustering methods: HCM, FCM, PCM and MEP. 

Comparing the segmentation results the classic c-means methods give us the simply picture while 

the FCM, MEP and PCM approaches show structural segments and more complicated pictures of 

a tumor. Generally, figures are showing the similar results for fuzzy and MEP clustering 

algorithms.  
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                              A                                               B                                            C 

 

             
                              D                                              E                                              F 

 

Fig. 1. The results of segmentation of two-modal MRI image (A – T1 image, B – T2 image) for 

algorithms HCM (C), FCM (D), MEP (E) and PCM (F).  

 

CONCLUSION  
 

The comparison of segmentation results of multimodal medical images shows the big variability 

depending different clustering methods, both in the speed of algorithms and in final image 

qualities. The example results (see fig. 1) are not perfect but this problem is strongly depended on 

algorithms convergence and their sensitivity to initial conditions in cluster centers.  There is also a 

question: how to explain the MEP approach without normalization constraint. From a practical 

point of view the possibilistic approach can agree with the MEP. Consider the set of elements with 

an assumption that the number of clusters is c2 (“Fig. 2”). The one outstanding point is usually 

considered as an effect of the noise. But it can be taken as a third little, unknown and unexpected 

cluster. Then the normalization condition should be “for all i: vi1 + vi2 + vi3 = 1”. But this way the 

sum over two clusters will fulfil “for all i: vi1 + vi2  1 and vi1 + vi2 < 1”. In conditions of incomplete 

information, it can happen that the number of clusters is bigger than a prior assumption. From this 

point of view the maximization of entropy without the normalization constraint have a sense for 

clustering with established number of clusters.  

 

 

 Figure 2. Example of a data set with one outstanding point.   
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