

SELF-REGULATION IN CONTINUUM POPULATION MODELS

Yuri Kondratiev¹, Jurij Kozicki²

¹Fakutät für Mathematik, Universität Bielefeld Bielefeld D-33615, Germany
¹Interdisciplinary Center for Complex Systems Dragomanov University, Kyiv, Ukraine ²Institute of Mathematics Maria Curie-Skłodowska University in Lublin pl. Marii Curie-Skłodowskiej 5, 20-031 Lublin
¹kondrat@math.uni-bielefeld.de, ²jkozi@hektor.umcs.lublin.pl

ABSTRACT

Self-regulation in two models of point entities placed in \mathbb{R}^d is shown to occur under very general assumptions regarding the properties of the models. The first one is an evolving infinite birthand-death system with dispersal and competition described by the corresponding kernels a^+ and a^- . Assuming that both a^{\pm} are just continuous and integrable we prove that the evolution of states $\mu_0 \to \mu_t$ preserves their sub-Poissonicity, and hence the local self-regulation (suppression of clustering) takes place. In the second model, we deal with an infinite migration system with the immigration rate b and the competition kernel a^- as in the first model. For this model, we prove that the moments $\mu_t(N^n_\Lambda)$, $n \in \mathbb{N}$, of the number of entities in compact $\Lambda \subset \mathbb{R}^d$ remain bounded for all t > 0, and hence the global self-regulation takes place. In both considered models, the self-regulation effects of this kind do not occur if $a^- \equiv 0$.