

THE EFFECT OF AGAROSE HYDROGEL CONCENTRATION ON DIFFUSION OF BIOMOLECULES

Kazimierz Dworecki^{1,†}, Ewa Tomal², Marcin Drabik¹, Jacek Semaniak ¹, Sławomir Wąsik¹

 ¹Institutie of Physics, Jan Kochanowski University ul. Świętokrzyska 15, 25-406 Kielce
²Institutie of Biology, Jan Kochanowski University ul. Świętokrzyska 15, 25-406 Kielce
[†]kazimierz.dworecki@ujk.edu.pl

ABSTRACT

We study diffusion of biomolecules (amino acids) in agarose hydrogel for different agarose gel concentrations ranging from 0.5% to 3%. The structure of agarose hydrogels was earlier found by means of the atomic microscopy method (AFM).

The transport substance can be characterised by a time evolution of the so-called diffusin layer (DL), where the concentration of diffusing substance drops k time. When the thickness of DL, grows in time as t^{γ} with $\gamma=0.5$ we deal with normal or gaussian diffusin. If $\gamma>0.5$ there is a superdiffusion and when $\gamma<0.5$ we have a subdiffusive behaviour. To observe the time evolution of DL we have employed the interferometric technique: the interference fringes pattern has provided quantitative measurement of the substance concentration C(x,t) at position x and at time t. Recording the interferograms with a given time step, we have constructed the profile of amino acid concentration.

Our results show that the thickness of diffusion layer grows in time t as t^{γ} , with $\gamma < 0.5$, manifesting a subdiffusive character of the transport proces in hydrogels with concentration of the agarose larger than 0.5%. Analysis of the AFM images indicate that these one are much more pores in the 0.5% gel than in the 3% one. We observe that the diffusion exponent — γ decreases with increasing agarose concentration.

ACKNOWLEDGEMENTS

This work was supported by BS UJK grant no. 612414.