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Elżbieta Ratajczyk1, Maciej Leszczyński2, Urszula Ledzewicz3, Avner Friedman4

1,2,3 Institute of Mathematics, Łódź University of Technology,
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ABSTRACT
We will present a mathematical model for a virotherapy of glioma. The action of the continuously injected
herpes simplex virus will be supported by an inhibitor of the TNF-α, which will be applied to supress the
innate immune response by macrophages. We will study the efficacy of the treatment measured in the radius of
the tumor under different combination of the two drugs. The model may serve as a first step toward developing
an optimal strategy for the treatment of glioma by the combination of TNF-α inhibitor and oncolytic virus
injection.

INTRODUCTION
Oncolytic viruses are genetically altered replication-competent viruses which infect and reproduce
in cancer cells but do not harm normal cells. When an infected cell dies many newly formed viruses
are released and spread out infectiong neighboring tumor cells. This therapy, although based on
quite promising assumptions, enounters one major obstacle; the innate immune system recognizes
the infected cells and destroys them before the viruses within them get a chance to multiply [2].

It was reported in [4] that CD 163+ macrophages in the rats experiments for glioma inhibited
OV therapy making it unsuccessful. The solution suggested in [4] was to use cyclophosphami-
de (CPA) as a suppressant of the immune response through the inhibition of CD 163+ and thus
enhance the effectiveness of the OV therapy.

This approach has been studied from the mathematical point of view by Friedman et al. in [3].
The model in [3] was described by the system of PDEs and effect of the therapy with and without
CPA was analyzed.

In the present paper we intend to pick up on this work, but pursue a different avenue based on
a very recent paper by Auffinger et al. [1]. In that paper was suggested that in order to enable the
effective action of the virotherapy one should try to block the main "weapon" used by macropha-
ges, namely the TNF-α. It was demonstrated there that inhibition of TNF-α could significantly
enhance virus replication and the efficacy of the overal treatment.
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Thus our goal here it to construct a model which captures the interactions between healthy tu-
mor cells, infected tumor cells, the viruses and macrophages and the TNF-α they produce. The mo-
del is based on the work of Friedman et al. [3]. However, here we will formulate a reduction of
this model from the spatial PDE model to the population type ODE model. For this will enable
us pursue detailed dynamical system analysis of the model as well as analysis of it as an optimal
control problem for drug treatment. Although the spatial element has to be compromised for that,
it is not entirely removed from the analysis. Indeed, we will be able to estimate the tumor radius
in terms of the cells population. The efficacy of both treatments by injection of virus and TNF-α
inhibitor will be analyzed in the context of the radius of the tumor.

The approach pursued in our paper will be to target the tumor by combining the two therapies:
the viral injection and the TNF-α inhibitor. We will analyze the response of the system to various
doses, particularly the efficacy of the therapy having as a goal the minimization of the tumor
radius. The administration of the virus will be pursued through a continuous injection.

One aspect to be taken into account is determining the doses of administration of both therapetic
agents: the virus and the TNF-α inhibitor have negative side-effects.

A MATHEMATICAL MODEL
Let x(t) denote the density of cancer cells (uninfected), y(t) the density of infected cancer cells,
v(t) the density of the virus,M(t) the density of the macrophages, and T (t) the concentration of
TNF-α, T (t). The model includes two controls, u1 and u2. The control u1(t) represents the amo-
unt of the virus that is injected into the tumor and the control u2(t) stands for the dosage of the
TNF-α inhibitor.

The burst number is the number of virus that emerge from dying cancer cells. We shall take it
in the range of 50 ¬ b ¬ 150. Using units of g

cm3 , the parameter b is the burst size defined as
b× mass of virusmass of cells = b× 10−6.

The dynamics of the model is expressed mathematically by the following system of the ODEs:

dx

dt
= αx− βxv − δxx, (1)

dy

dt
= βxv − ky T

K + T
− δyy, (2)

dM

dt
= A+ syM − δMM, (3)

dT

dt
=

λ

1 + u2
M − κy T

K + T
− δTT, (4)

dv

dt
= b1ky

T

K + T
+ bδyy − ρxv − δvv + u1. (5)

All the densities and concentrations are in unit of g
cm3 . In Eq. (1) α represents the proliferation

rate of unifected cancer cells and δx is the death rate; β is the infection rate of x by viruses v.
In Eq. (2) the term ky T

K+T represents the necrotic death of infected celss caused by TNF-α,
while δy is the death by apoptosis. When a cell y dies by apoptosis, b virus particles are released,
while if it dies by necrosis a very small number, b1, of viruses emerge. These are accounted by
the first two terms on the right hand side of Eq. (5). In Eq. (3) the terms A and δMM represent
the source and death of macrophages under healthy normal conditions, while syM accounts for
the tumorigenic response of the immune system invoked by the infected cells y. In Eq. (4), the first
term on the right-hand side is the production of TNF-α by macrophages. while the remaining two
terms are loss by absorption within y cells and by natural degradation. The virus equation (5)
includes virus particles from dead y cells and loss from absorption by x (i.e. ρxv) and natural
degradation/clearance (δvv). We also included in the model a continuous injection u1 of virus, as
virotherapeutic drug, and a continuous injection u2 as TNF-α inhibitor (in Eq. (4)).
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In the present paper we take u1 ≡ const = C and u2 ≡ const = D. We expect b1 to be very
small (viruses are damaged during necrosis) so for simplicity we shall take b1 = 0. As in [3] the
viruses burst (or replication) number b will play a major role in the progression of the disease and
its treatment.

We denote by n(t) the density of all the dead cells. Then, in addition to the dynamics given by
(1)-(5), we have the equation

dn

dt
= ky

T

K + T
+ δyy + δxx+ δMM − µn, (6)

where µ is the rate by which dead cells are cleared out of the tumor.
Table 1 gives the values of the parameters, which will be used in our analysis.

Tabela 1. Parameters of the model

Parameter Description Num. values Dimension
α Proliferation rate of uninfected tumor cells 0.2 1/day
β Infection rate of tumor cells by viruses 2 · 104 cm3

g·day
ρ Rate of loss of viruses during infection 4 · 10−2 cm3

g·day
k Effectiveness of the inhibitory action of TNF-α 0.4 1/day
δy Infected tumor cell death rate 0.2 1/day
λ TNF-α production rate 2.86 · 10−3 1/day
δT TNF -α cell degradation rate 55.45 1/day
δM Macrophages death rate 0.015 1/day
K Carrying capacity of the TNF-α 5 · 10−7 g

cm3

κ Degradation of TNF-α due to its action 4 · 10−10 1/day
on infected cells

δv Virus lysis rate 0.5 1/day
A Constant source of macrophages 9 · 10−7 g

cm3·day
s Stimulation rate of macrophages by infected cells 0.15 cm3

g·day
without stimulus

δx death rate of uninfected cancer cells 0.1 1/day
µ removal rate of dead cells 0.25 1/day
θ0 average of total densitiy of cells 0.9 g/cm3

CALCULATION OF THE TUMOR RADIUS
We assume that the tumor is sperical with variable radius R(t), volume V (t) and a massm(t) =
x(t) + y(t) +M(t) + n(t). Thus at each point of the sphere the density of the cells increases at
the rate dmdt . Adding up the equations (1)-(3) and (6) we get

dm

dt
= αx − δxx+A+ syM − µn

The total mass of the tumor then increases at rate

V (t)(αx̃ − δxx̃+A+ sỹM − µñ)

where z̃ is the average of z. Let θ0 is be the sum of averages, θ0 = x̃ + ỹ + M̃ + ñ.We assume
that that increase in total mass causes the tumor volume to increase propotionally, that is by θ0 dVdt
and that ỹM = ỹM̃ so that

θ0
dV

dt
= V (t)(αx̃ − δxx̃+A+ sỹM̃ − µñ)
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Since
dV

dt
V =

3
R

dR

dt
we get

θ0
3
R

dR

dt
= (αx̃− δxx̃+A+ sỹM̃)− µñ

Hence
θ0
3
R

dR

dt
= (αx̃− δxx̃+A+ sỹM̃)− µ(θ0 − x̃− ỹ − M̃)

Finally we assume that x, y,M and v satisfy the same equation as the averages x̃, ỹ,̃M and ṽ.
Hence we get the following formula for the tumor radius:

θ0
3
R

dR

dt
= (αx− δxx+A+ syM)− µ(θ0 − x− y −M) (7)

RESULTS
In this section we simulate the model (1)-(7) in order to determine how the state of the system
responds to a combined therapy. We assume that the process starts with the following initial con-
ditions:

x(0) = 0.7, y(0) = 0.1, n(0) = 0, M(0) = 0.1, T (0) = 10−7,
4π
3
R(0)3 = 0.9.

We assume that initially we inject dose of viruses, given by v(0) = 10−6 and no additional
therapy is given. If b is small, namely b = 70, the tumor radius increases to 43cm at t = 50. For
b = 90, R(50) is still large, namely R(50) ≈ 6cm. It is only when b = 150 that R(50) does no
longer increase relative to R(0). These results are in agreement with the mouse experiments in [3]
in the sense that if b = 50 the tumor radius quickly increases while if b = 150 the radius begins to
decrease. The simulations of T (t) suggests that the initial load v(0) results in massive increase of
TNF-α. We also see that after initial injection of the virus, the virus is multiplying to achieve its
maximum by day about 30 for b = 70 and 90; after that, the virus density keeps decreasing - the
drug is ’too week’. As a result, the growth of R after day 30 is limited. However, the increasing
amount of virus in the first 30 days causesM to growth - which leads to growth of T mentioned
above. And big amounts of T restrains the replication of virus residing in infected cells y - which
is bad for the therapy.

Rysunek 1. Graphs of R(50) for different values of C.

We will now study behaviour of the system that we apply constant viral infusion C = 5 · 10−7.
The effect of the drug on the tumor radius is as follows: for b = 70 and b = 90 the radius R(t)
is still increasing, although much less than in the case of C = 0. But for b = 150 function R
after small initial increase, is strictly decreasing, with R(50) approximately half the initial tumor
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radius. Fig. 1 shows the profile of R(50) as a function of b. We see that R(50) is monotone
decreasing function of b; furthermore for smaller b’s the decline in R(50), as b increases, is more
steep. For each value of b, we can determine the exact value of C for which the drug will decrease
R(50) below its initial size. For b < 120 doses around 10−7 do not decrease R by day 50, but for
b > 120, the smaller doses will make R(50) smaller than R(0).

Next we will assume that combined therapy is given at constant rates, i.e. C = 5 · 10−7 and
D = 15. Firstly, for b = 70, the tumor size increases but not as much as in the case D = 0
(now R(50) is 5 times smaller). For b = 90 the tumor radius, after initial increase, goes down
to reach its initial size. Finally for b = 150 we also obtain our desired goal for tumor reduction
(R(50) ≈ 0.1cm). We note here that values of T (t) are of an order of magnitude lower than in
the caseD = 0. ApplyingD also supports growth of v - now it is about 5 times higher.

Now it becomes natural to look closer at the therapy itself and see how the two main agents:
viral infusion and TNF-α inhibitor contribute to the succes of the therapy. Fig. 2 shows how
the system evolves in terms of R(50) for variable replication number b while applying different
D amounts. We see that even for b = 80 and C = 5 · 10−7 we can decrease R(50) from R(0) if
we take D = 30. In the figure with b ∈ [110, 130] we use lower C, namely C = 3 · 10−7, then
even with such high burst number, with D = 0, R(50) > R(0). This case shows the signifficant
effect of small doses ofD may have, namely for b ­ 123, with the low dose of D, D = 3 we get
the desired shrinkage of the tumor radius i.e. R(50) < R(0).

Rysunek 2. Graphs of R(50) for fixed C and different values of D.

In order to capture more clearly the benefits of the dual therapy by C and D, we introduce
the concept of efficacy. Let T denote the duration of the therapy. For our analysis we will choose
the window of T = 50. We denote byR(C,D) the radius of the tumor at the day T under the com-
bined treatment with u1(t) ≡ C and u2(t) ≡ D. The efficacy of the combined therapy is defined
by

E(C,D) =
R(0, 0)−R(C,D)

R(0, 0)
.

Fig. 3 is an efficacy map for the case b = 90 showing the efficacy of the combined treatment
with C varying along the horizontal axis andD along the vertical one. We can see that the efficacy
of the combined treatment increases with either C orD. For small C, the efficacy goes up sharply
with D. For D > 4 (TNF-α production is inhibited by 80%) the efficacy grows slowly with C.
An efficacy map for b = 70 has the same features as in Fig. 3 (not shown here).

In the efficacy map for the case b = 150 we take a smaller range of C, C ∈ [10−7, 5 · 10−7].
The reason is that for higher values of C, R(50) will become very small even if D = 0. We still



96 E. Ratajczyk, M. Leszczyński et al.

Rysunek 3. Efficacy maps for b = 90 and b = 150, respectively.

see for small C a sharp increase in the efficacy as D increases, but for fixed D there is almost no
increase in the efficacy as C increases.

DISCUSSION AND CONCLUSION
Following recent experiments [5] that show that blocking macrophages-produced TNF-α can en-
hance virotherapy treatment in glioma. We developed a mathematical model which includes both
drugs, oncolytic viruses and TNF-α inhibitor. We observed that the burst number b plays a critical
role in the model. Given a combined therapy (C,D) and terminal time T , the tumor radius R(t)
at time t = T will be smaller then the initial radius R(0) if and only if b exceeds certain treshold
number, b(C,D). Furthermore, we developed an efficacy map of treatment that depends on b. Ge-
nerally the maps show the importance of the TNF-α inhibitor application in the combined therapy.
Even a small dose applied we can obtain better efficacy than raising the level of viral infusion very
significantly. Further work on the topic will include analysis of the model as a dynamical system
with a goal of establishing long term behaviour.
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