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ABSTRACT
We consider an optimal control problem for a general mathematical model for chemotherapy with a single
agent. The control represents the concentration of the agent and its effect (pharmacodynamics) is modelled by
a Michaelis-Menten type relation. The aim is to minimize a cost functional consisting of a weighted average
related to the state of the system both at the end and during a fixed therapy horizon and to the total amount
of drugs given. The latter is an indirect measure for the side effects of treatment. It is shown that optimal
controls are continuous functions of time that change between full or no dose segments with connecting
pieces that take values in the interior of the control set.

INTRODUCTION
We consider optimal control problems for chemotherapy (not necessarily restricted to cancer). The
controls u in the formulation represent the dosages of various chemotherapeutic agents while phar-
macokinetic models (PK) describe the relations between the dosages of the agents and their con-
centrations c in the blood stream (“what the body does to the drug") and pharmacodynamic models
(PD) describe the effects that the drugs have on the disease (“what the drug does to the body").
Generally PK is modelled by low-dimensional linear differential equations with real eigenvalues
[4]. Pharmacodynamic models, on the other hand, are simply given by functional relations of the
form ϕ(c) that model the effect the concentration c has. Here both linear models (based on the log-
kill hypothesis [11]) as well as Michaelis-Menten or sigmoidal functional relations are commonly
used [6, 8]. The latter type of functional relations are highly nonlinear and thus the dependence
of optimal controls on the specific relations used in the modeling becomes a mathematically non-
trivial problem [5, 10] which at the same time is of great practical interest. These changes that
pharmacometrics (i.e., both PK and PD) induce on the structure of optimal solutions are the scope
of our research.
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In this paper, we present results about the structure of optimal controls for a single chemother-
apeutic agent when pharmacodynamics is modelled by a Michaelis-Menten type equation. This
relation is based on enzyme kinetics and takes the form

Emax
c

C50 + c
(1)

where Emax denotes the maximum effect the drug can have and C50 is the concentration for which
half of this maximum effect is realized. These are standard parameters used in pharmacology to
describe the effectiveness of drugs. This model, also called the Emax-model in pharmacology, is
appropriate for fast acting drugs that do not have a prolonged initial phase when the concentration
builds up slowly. During such a phase the drug is still rather ineffective and a sigmoidal model
would be more appropriate. Contrary to linear models of the form γc, a Michaelis-Menten form
captures the typical saturation effects when the concentration becomes too large. As such it is the
most commonly used model for PD in the industry. For simplicity, here we also do not include
a pharmacokinetic model and thus identify the drug’s dosage with its concentration in the blood
stream. Once more, this is a reasonable modeling assumption for fast acting drugs. Then, for a
fixed therapy horizon, we consider the optimal control problem to minimize a weighted average of
quantities related to the state of the disease or infection and the total amount of drugs administered.
The latter is given by the integral

∫ T

0 u(s)ds, the so-called AUC (“area under the curve") widely
used in the pharmaceutical industry to describe the efficacy of treatment. It also represents an
indirect assessment of the side effects of therapy and thus including it in the objective tends to
limit these negative effects.

We show in this paper that a Michaelis-Menten type expression for the pharmacodynamics
induces enough convexity properties on the Hamiltonian function of the optimal control problem
as a function of the control u to generate optimal controls which are continuous in time. This is
consistent with an interpretation of the controls as concentrations (since no PK model is included)
and it significantly simplifies numerical computations.

FORMULATION OF THE OPTIMAL CONTROL PROBLEM
We consider a general system of differential equations of the form

ẋ = f(x) +
u

1 + u
g(x) (2)

where f : D → Rn and g : D → Rn are continuously differentiable vector fields defined on some
domain D ⊂ Rn. The dynamics represents an abstract formulation for chemotherapy with a single
agent. The vector field f , called the drift, describes the evolution of the system when no drugs are
given (u ≡ 0), while the vector field g, the control vector field, in combination with the control
term describes the effects of drug treatment. The variable u, the control in the system, represents
the concentration of the chemotherapeutic agent given. In this formulation we do not yet include
a pharmacokinetic equation and thus identify the dosage with the concentration. The functional
form used for the control u represents a Michaelis-Menten or Emax-model with C50 normalized
to 1 and the constant Emax subsumed in g.

Controls are Lebesgue measurable functions u : [0, T ] → [0, umax] defined over an a priori
fixed therapy horizon [0, T ] that take values in a compact interval [0, umax]. It follows from stan-
dard results on solutions of differential equations that for any x0 ∈ D the initial value problem for
the dynamics (2) with initial condition x(0) = x0 has a unique local solution x(·;x0) which we
call the corresponding trajectory. However, for general vector fields f and g there is no guarantee
that this solutions will exist on all of [0, T ]. Admissible controls thus are only those controls for
which this solution exists over the full therapy horizon. For an admissible control we then define
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the objective functional J in the form

J = J(u) = αx(T ) +

∫ T

0

βx(s) + γu(s)ds (3)

where α and β are n-dimensional row vectors, α, β ∈ (Rn)
∗, and γ is a positive real number.

The term αx(T ) represents a weighted average of the variables x at the terminal time T (such as
the total number of cancer cells at the end of therapy) while the integral term on the state x is
included to prevent that this quantity would increase to unacceptably high levels in between. The
integral of the control is the AUC-term of pharmacology and it is a measure for the side effects
of treatment. Minimizing this quantity J generates a compromise between two competing aims
of treatment. On one hand, the aim is to reduce the state x which represents the severity of the
disease or infection (e.g., tumor volume) and this requires to give as much drugs as possible. On
the other hand, side effects need to be limited and so the aim also is to give as little drugs as
possible. Clearly, the balance will be determined by the weights α, β and γ in the objective and
generally these coefficients are variables of choice which need to be selected carefully to obtain a
meaningful behavior.

We thus consider the following optimal control problem:
[MM]: Minimize the functional J over all admissible controls u : [0, T ] → [0, umax] sub-

ject to the dynamics (2).

NECESSARY CONDITIONS FOR OPTIMALITY
The fundamental necessary conditions for optimality for problem [MM] are given by the Pon-
tryagin Maximum Principle [7] (for some more recent references on optimal control, see [1,2,9]).
Since the optimal control problem [MM] does not involve terminal constraints on the state, without
loss of generality we define the Hamiltonian function H for the control problem as

H : (Rn)∗ × Rn × R → R (4)

(λ, x, u) → H(λ, x, u) = βx + γu +

〈
λ, f(x) +

u

1 + u
g(x)

〉

with 〈λ, v〉 = λv denoting the inner product of a row vector λ with a column vector v. If u∗
is an optimal control and x∗ denotes the corresponding trajectory, then there exists a covector
λ : [0, T ] → (Rn)∗ which is a solution to the so-called adjoint equation,

λ̇ = −β − λ

(
Df(x) +

u

1 + u
Dg(x)

)
, (5)

with terminal condition λ(T ) = α such that the Hamiltonian H is minimized almost everywhere
on [0, T ] by u∗ along (λ(t), x∗(t)) with the minimum value 0, i.e.,

H(λ(t), x∗(t), u∗(t)) = min
0≤v≤umax

H(λ(t), x∗(t), v) ≡ 0. (6)

Controlled trajectories (x, u) for which there exists a multiplier λ such that these conditions are
satisfied are called extremals and the triples (x, u, λ) including the multipliers are called extremal
lifts (to the cotangent bundle).

An important property for solutions to the optimal control problem [MM] is that optimal con-
trols are continuous. More specifically, we have the following representation of optimal controls.
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Theorem 1. Let u∗ be an optimal control with corresponding trajectory x∗ and let λ be an adjoint
vector such that the conditions of the maximum principle are satisfied. Then we have that

u∗(t) =





umax if 〈λ(t), g(x∗(t))〉 ≤ −γ(umax + 1)2,

√
− 〈λ(t),g(x∗)〉

γ − 1 if − γ(umax + 1)2 ≤ 〈λ(t), g(x∗(t))〉 ≤ −γ,

0 if − γ ≤ 〈λ(t), g(x∗(t))〉.

(7)

Proof. We need to minimize the Hamiltonian H as a function of the control u over the control set
[0, umax]. Since

∂H

∂u
= γ +

〈λ, g(x)〉
(1 + u)2

,

it follows that H(λ(t), x∗(t), u) is strictly increasing in u if the function

Φ(t) = 〈λ(t), g(x∗(t))〉 (8)

is non-negative. Hence in this case the minimum over the control set [0, umax] is attained for
u∗ = 0.

If Φ(t) is negative, then it follows from

∂2H

∂u2
= −2〈λ, g(x)〉

(1 + u)3

that the Hamiltonian H(λ(t), x∗(t), u) is a strictly convex function of u on R. Hence it has a
unique stationary point and this point is the global minimum of the function. Solving ∂H

∂u = 0, the
stationary point is given by

ust(t) =

√
−Φ(t)

γ
− 1. (9)

Depending on the location of ust(t) we get the following three cases: if ust(t) < 0, then the
function H(λ(t), x∗(t), ·) is strictly increasing on [0, umax] with minimum at u∗ = 0; if 0 ≤
ust(t) ≤ umax, then the global minimum lies in the control set and thus u∗ is given by the
stationary point, and if ust(t) > umax, then H(λ(t), x∗(t), ·) is strictly decreasing over [0, umax]
with minimum at u∗ = umax. This proves the result. �
Corollary 1. Optimal controls are continuous.

Proof. Using the notation from the proof above, as long as Φ(t) is negative, the point ust(t) where
the Hamiltonian H(λ(t), x∗(t), ·) attains its minimum varies continuously with t. For this case
we can represent the control in the form

u∗(t) = max{0,min{ust(t), umax}} (10)

and thus u∗ is continuous as long as Φ(t) is negative. For Φ(t) ≥ 0 the optimal control is given
by u∗ ≡ 0 which is also the optimal control for Φ(t) ≥ −γ. Hence optimal controls remain
continuous as Φ becomes nonnegative. �.

Thus optimal controls continuously change between the limiting values umax and 0 and values
that lie in the interior of the control set as the functionΦ crosses the levels −γ and −γ(1+umax)

2.
We therefore call the function Φ the indicator function for the optimal control. Clearly, it is this
function that determines the optimal controls and, for example, we have the following result:

Proposition 1. If the indicator function Φ is strictly increasing on [0, T ], then optimal controls are
concatenations of boundary and interior controls of at most the sequence umax → ust(t) → 0,
i.e., possibly starting with a full dose segment, u∗(t) ≡ umax, controls switch to the interior
control u∗(t) = ust(t) and end with a segment where no drugs are given, u∗(t) ≡ 0. For some
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initial conditions this sequence may be shorter and not all pieces need to be present. Analogously,
if Φ is strictly decreasing on [0, T ], then optimal controls are at most concatenations that follow
the sequence 0 → ust(t) → umax. �

Overall, monotonicity and convexity properties of the indicator function determine the concate-
nation structure of the optimal controls. It is therefore of importance to be able to compute the
derivatives of the indicator function effectively. This is accomplished by direct computations:

Proposition 2. Let (x, u, λ) be an extremal lift for the optimal control problem [MM]. Given a
continuously differentiable vector field h, define the function Ψ(t) = 〈λ(t), h(x(t))〉. Then the
derivative of Ψ is given by

Ψ̇(t) = −〈β, h(x(t))〉 + 〈λ(t), [f, h] (x(t))〉 + u(t)

1 + u(t)
〈λ(t), [g, h] (x(t))〉 (11)

where [k, h](x) = Dh(x)k(x) − Dk(x)h(x) denotes the Lie bracket of the vector fields k and h.

EXAMPLE: A MATHEMATICAL MODEL FOR ANTI-ANGIOGENIC TREATMENT
We consider a dynamical system for tumor development under angiogenic signaling based on the
equations by Hahnfeldt, Panigrahy, Folkman and Hlatky [3]. In this model, the spatial aspects of
the underlying consumption-diffusion process that stimulate and inhibit angiogenesis are incorpo-
rated into a nonspatial 2-compartment model with the primary tumor volume, p, and the carrying
capacity of the vasculature, q, as its principal variables. The dynamics consists of two ODEs that
describe the evolution of the tumor volume and its carrying capacity and we refer the reader to [3]
or [10] for a detailed development of the mathematical model. The optimal control problem [MM]
for this model takes the following form:

[H]: For a free terminal time T , minimize the functional

J = J(u) = p(T ) +

∫ T

0

θp(s) + γu(s)ds

subject to the dynamics

ṗ = −ξp ln

(
p

q

)
, p(0) = p0, (12)

q̇ = bp − dp
2
3 q − µq − Guq

1 + u
, q(0) = q0. (13)

over all Lebesgue measurable (respectively, piecewise continuous) functions u : [0, T ] →
[0, umax].

Administering anti-angiogenic drugs directly leads to a reduction of the carrying capacity q of
the vasculature, but only indirectly effects the tumor volume p. For this reason here we have taken
the weights in the objective as α = (1, 0) normalizing the weight for the tumor volume at the end
of the therapy interval and β = (θ, 0) putting the emphasis on tumor reductions. The drift and
control vector fields in the general description [MM] are, with x = (p, q), given by

f(x) =




−ξp ln
(

p
q

)

bp−
(
µ + dp

2
3

)
q


 , g(x) =




0

−Gq




and the Hamiltonian function H for the control problem is

H(λ, x, u) = θp + γu − λ1ξp ln

(
p

q

)
+ λ2

(
bp −

(
µ + dp

2
3

)
q − Gu

1 + u
q

)
. (14)
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If u∗ is an optimal control defined over an interval [0, T ] with corresponding trajectory (p∗, q∗),
then there exists an absolutely continuous co-vector, λ : [0, T ] → (R2)∗, such that λ1 and λ2

satisfy the adjoint equations

λ̇1 = −∂H

∂p
= −θ + λ1ξ

(
ln

(
p

q

)
+ 1

)
− λ2

(
b − 2

3
p−

1
3 q

)
, (15)

λ̇2 = −∂H

∂q
= −λ1ξ

p

q
+ λ2

(
µ + dp

2
3 +

Gu

1 + u

)
, (16)

with terminal conditions
λ1(T ) = θ, λ2(T ) = 0

and, by Theorem 1, optimal controls satisfy

u∗(t) =





umax if Gq(t)λ2(t) ≥ γ(umax + 1)2,√
Gq(t)λ2(t)

γ − 1 if γ(umax + 1)2 ≥ Gq(t)λ2(t) ≥ γ,

0 if γ ≥ Gq(t)λ2(t).

(17)

It follows from the transversality condition that Φ(T ) = −Gλ2(T )q(T ) = 0 and thus optimal
controls end with an interval [τ, T ] where u∗(t) ≡ 0. The precise sequence of segments when the
control lies on the boundary or in the interior still needs to be determined. It is expected that for
biomedically realistic initial conditions optimal controls start with a full dose segment and then
the dose is lowered to 0 at the end along one segment for which optimal controls take values in the
interior of the control set.

CONCLUSION
Optimal controls for the problems considered in this paper are continuous concatenations of seg-
ments that consist of full or no dose controls connected by interior segments. This structure allows
for efficient numerical computations of extremals. Second-order conditions for local optimality of
such extremals can then be formulated based on the method of characteristics as it is developed in
[9]. This will be done in future work.
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