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ABSTRACT
In this paper we consider a model proposed by Allison et al.. We show its drawbacks and modify it in order
to adjust it better to empirical data. The modified model takes into account the negative impact of cancer on
effector cells. The adjustment of the solutions of both models to experimental data is analysed. We show
sample parameters for which the modified model fits the empirically measured data better.

BIOLOGICAL BACKGROUND
In this paper a mathematical model of the adaptive immune response against cancer cells is dis-
cussed.

In the bone marrow, due to the interaction with the antigen, the natural killer (NK) cells are
activated. NK cells are cytotoxic lymphocytes. They release cytokines and enzymes capable of
destroying the antigen causing its lysis or apoptosis.

NK cells can be incubated in the laboratory with Interleukin-2, a type of cytokine. After such
stimulation NK cells become lymphokine-activated killer (LAK) cells. LAK cells develop a highly
cytotoxic and specific to cancer effector function. Thus they will be subsequently called effector
cells. Lymphokine-activated killer cells are able to lyse primary as well as metastatic tumour cells,
even those which were previously resistant to the NK cells.

The organism itself cannot effectively fight against cancer cells. However, the abilities of LAK
cells indicate that immunotherapy consisting in modifying activity of the immune system could be
a promising method of cancer treatment. In the future it may become an alternative or a comple-
ment for chemotherapy, radiotherapy or surgery.

ALLISON’S MODEL
Allison et al. [1] developed a mathematical model of the immune system response to cancer and
compared the solution of the model with empirical data. They proposed the following system of
equations 

dC
dt

= kCC − γCE,

dE
dt

= kE E
(
1 −

E
K

)
,

(1)

where C denotes the number of cancer cells at the moment t, E — the number of effector cells at
the moment t, kC , kE are the growth rate of the cancer cells and the effector cells, respectively. The
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parameter γ stands for the probability that interaction between a cancer and effector cell results in
destruction of the cancer cell, while K is carrying capacity for the effector cells.

Model (1) was constructed under the following assumptions: effector cells, when introduced
into human body, start interacting with cancer immediately; in the absence of effector cells, growth
rate of cancer cells is proportional to their number; natural death rate for the effector cells is neg-
ligible during considered time interval; cancer cells don’t have impact on effector cells’ activity.

System (1) can be solved explicitly. Its solutions reads
C(t) =

C0 ekC t

(1 − E0
K (1 − ekE t))

γK
kE

,

E(t) =
E0K

(K − E0) e−kE t +E0
,

(2)

where C0 = C(0) and E0 = E(0).

MODIFIED MODEL
The main drawback of Allison’s model is the assumption that cancer doesn’t affect the dynamics
of the effector cells. According to biological knowledge, tumour cells produce substances which
may inhibit effector cells’ activity [5]. Therefore, in the present study, we propose the following,
modified system of equation, which takes into account a negative impact of cancer on the effector
cells’ population: 

dC
dt

= kCC − γCE,

dE
dt

= kE E
(
1 −

E
K

)
− βCE,

(3)

where β stands for the probability that interaction between cancer and effector cell will result in
deactivation of the latter. Other variables and parameters are defined as in the previous section.

Certain models concerning the impact of tumour cells on the activity of the effector cells have
already been developed (e.g. Kuznetsoz, 1992; Roesch, 2014), nevertheless, to the author’s knowl-
edge, none of them took into account effector cells carrying capacity.

Unlike system (1), explicit solution to system (3) cannot be found in a general case. Neverthe-
less, certain properties of these solutions can be determined.

Theorem 1. For any non-negative initial condition (C0, E0) there exists a unique, nonnegative
solution to system (3), that is well defined for all t ≥ 0.

Proof. The right hand side of system (3) is locally Lipchitz continuous, thus local existence and
uniqueness follows directly from the Picard-Lindelöf Theorem.

The solution to (3) can be written in an implicit form

C(t) = C0 exp
(
kCt − γ

∫ t

0
E(s) ds

)
, and E(t) = E0 exp

(
kE t −

∫ t

0

(kE

K
E(s) + βC(s)

)
ds

)
.

Thus, C(t) ≥ 0 and E(t) ≥ 0 for non-negative initial conditions.
Now we prove that each solution to system (3) is defined for every t > 0. To this end, it is

enough to prove that C(t) and E(t) are bounded on each compact interval [0,T ]. This fact follows
from bounding C(t) by C0 ekCT and E(t) by E0 ekET .

To conclude, for any non-negative initial condition (C0, E0), there exists a unique, nonnegative
and well defined for each t ≥ 0 solution to system (3). �

Stationary states and their stability
Here, we determine the stationary states of system (3) and their stability.
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Theorem 2. System (3) has three stationary states:

A1 = (0, 0), A2 = (0,K), A3 =

(
kE

β

(
1 −

kC

γK

)
,

kC

γ

)
.

Proof. After equating dE
dt and dC

dt to 0 the result is obtained immediately. �

Note that the stationary state A3 is in the first quadrant of the coordinate system if and only if
kC
γK < 1. If kC

γK = 1 then A3 = A2. If kC
γK > 1, the first coordinate of A3 is negative and this stationary

state has no biological interpretation. Thus, we study its stability only for kC
γK ≤ 1.

Theorem 3. The following statements are true:
(i) Stationary state A1 is an unstable node;

(ii) If kC
γK < 1 stationary state A2 is a stable node and if kC

γK > 1 it is a saddle point.

(iii) If kC
γK < 1 stationary state A2 is a saddle point.

Proof. To check the stability of the preceding stationary states, we use the Lyapunov Linearization
Theorem. The Jacobian matrix for system (3) reads

J(C, E) =

[
kC − γE −γC
−βE kE − 2 kE

K E − βC

]
.

For each stationary state we compute the eigenvalues of the matrix J and use the Lyapunov Lin-
earization Theorem to check its stability.

For the stationary state A1 we have

J(A1) = J(0, 0) =

[
kC 0
0 kE

]
.

The eigenvalues of J(0, 0) are λ1 = kC and λ2 = kE , thus, the point (0, 0) is an unstable node.
For the stationary state A2, the Jacobi matrix reads

J(A2) = J(0,K) =

[
kC − γK 0
−βK −kE

]
.

The eigenvalues of J(0,K) are λ1 = kC − γK and λ2 = −kE , and the assertion (ii) follows.
Now, we check the stability of the stationary state A3, assuming that kC

γK < 1. The Jacobi matrix
reads

J(A3) = J
(

kE

β
(1 −

kC

γK
),

kC

γ

)
=

 0 −
γkE
β

+
kEkC
βK

−
βkC
γ

−
kEkC
γK

 ,
and the characteristic polynomial is

WJ(A3)(λ) = λ2 + λ
kEkC

γK
− kCkE +

kEk2
C

γK
. (4)

Polynomial (4) is a parabola with a positive coefficient of λ2. The assumption kC
γK < 1 yields

WJ(A3)(0) < 0, which in turn implies the existence of real positive and real negative roots of the
polynomial. This completes the proof. �

If K =
kC
γ

, then Re(λ1) = 0, which means that the Lyapunov Linearization Theorem does not
work for the stationary state A2. Nevertheless, the analysis of phase portrait, presented in the next
section, shows that the stationary state A2 is unstable.
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Analysis of the phase portraits
In order to show the global dynamics of the solutions, we analyse the phase portraits. It also
allows us to show the instability of the point A2 = A3 (the case when the Lyapunov Linearization
Theorem could not be used).

A few simple computations allow us to find four lines which are null-clines of model (3). The
null-clines for the variable C are the lines C = 0 and E =

kC
γ

, while for the variable E, the null-

clines are the lines E = 0 and E = −
βK
kE

C + K. These lines divide �2
+ into the following regions:

• B1 = {E > kC
γ

and E > − βK
kE

C + K}. In B1 both C and E are decreasing functions;

• B2 = {E > kC
γ

and E < − βK
kE

C + K}. In B2, C is decreasing and E is increasing;

• B3 = {E < kC
γ

and E > − βK
kE

C + K}. In B3, C is increasing and E is decreasing;

• B4 = {E < kC
γ

and E < − βK
kE

C + K}. In B4 both C and E are increasing functions.

Drawing phase portraits requires considering three cases: kC
γ
< K, kC

γ
= K, and kC

γ
> K.

Figure 1. The sketches of the phase portraits are presented in the top row, while in the
bottom one we present samples of the phase portraits. In the panels the cases K > kC

γ
(the

left panel), K =
kC
γ

(the middle panel) and K < kC
γ

(the right panel) are illustrated.

Theorem 3 shows that there is no such stable stationary state, in which the number of both can-
cer and effector cells is positive (as we can also see in Fig. 1). We show that only two possibilities
may happen over time:

(1) The number of effector cells decreases to 0, the number of tumour cells increases to∞;
(2) The number of cancer cells decreases to 0 and the number of effector cells converges to

K. At that time, human body overpowers the cancer.
Let us note that the second situation may take place only if K > kC

γ
. Moreover it happens

only for certain initial conditions (C0, E0). On the sample phase portrait for K > kC
γ

(Fig. 1d), the
solutions which converge to the equilibrium point (0,K) are marked with green. On the sketch of
the phase portrait (Fig. 1a) the red line is a sketch of the stable manifold for A3 and this manifold
splits solutions converging to (0,K) from those converging to infinity. For initial conditions located
to the left of this curve, the solutions will always converge to the stationary state A2. In fact, if the
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trajectory is over the null-cline E = kc/γ, the function C is decreasing and the trajectory is in the
region B1 ∪ B2. If the trajectory starts in B4 left to the stable manifold of A3, it eventually enters
B2 as E is strictly increasing and the it cannot cross the manifold. Otherwise (for initial conditions
to the right of the stable manifold), the number of the effector cells will always decrease to 0.
Those are the only two possibilities, since if the solution once appears in B3 it will never quit this
region (because C is increasing and E is decreasing, which follows directly from analysing the
signs of the derivatives). Similarly, if the solution appears in B2 it finally converges to (0,K) (E is
increasing and C is decreasing). Thus there are no oscillations around A3.

For K =
kC
γ

, regardless of the initial condition, the trajectory always eventually enters B3 and
the number of cancer cells converges to infinity.

To conclude, only sufficiently high initial effector cells to cancer cells ratio may help the human
body win with the tumour. Otherwise, the immune system will lose with cancer.

NUMERICAL COMPARISON OF THE PRESENTED MODELS
In [1] the following values of parameters were used for the lymphokine-activated killer cells,
referred to as LAK cells

kC = 1.54584, kE = 1.46153, K = 1340000. (5)

For the ratio 1 : 30, Allison et al. [1] assumed that γ = 0.000267. Moreover, the authors published
the empirically measured change in number of cancer cells for initial condition (1000, 30000) (the
experimental data are denoted by dots in Fig. 2).

Their results do not seem plausible. Probably Allison et al. made a mistake. Their graph of C(t)
perfectly fits the empirical data (see the left panel of Fig. 2). However, after inserting computed
parameters kC , kE ,K, γ into the solution to system (1) it turns out that the graph of C(t) looks
differently — it does not fit so good to the empirical data (see the right panel of Fig. 2).
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Figure 2. Graph of C(t) reproduced from the article [1] (the left panel); Graph of C(t) for
the initial condition (1000, 30000), drew by the author of the present study on the basis
of the model proposed by Allison et al., using given parameters (the right panel).

As we see, the graphs presented in Fig. 2 do not overlap. Probably the mistake has been made
during computing the parameters of the model, most likely the parameter γ, as it is the only one
that was changed in [1]. We manipulate the parameters β and γ in order to find sample values for
which the modified model fits the reality better than the one proposed by Allison et al.

The modified model fits the empirical data better for parameters, for which the Allison’s model
forecasts faster decrease of the number of tumour cells than it really happens. It is due to the fact
that in the modified model, the number of effector cells grows slower than in Allison’s work.

To see for which β and γ the modified model fits the empirical data best, we used the Particle
Swarm Optimization (PSO) method. We obtained the following results, minimizing MSE (mean
square error) and the average relative MSE, respectively:
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(1) β = 3.59 · 10−9 and γ = 3.26 · 10−4. MSE = 5328, average relative MSE = 3.107%;
(2) β = 5.89 · 10−4 and γ = 3.61 · 10−4. MSE = 8147, average relative MSE = 1.306%.

In the left panel of Fig. 3 the adjustment of (3) to the empirical data for the parameters given above
is presented.

For the Allison’s model, parameter γ that fits the empirical data best, obtained with the PSO
method, while minimizing MSE and the average relative MSE respectively, is:

(1) γ = 3.26 · 10−4. MSE = 5328, average relative MSE = 3.115%;
(2) γ = 3.49 · 10−4. MSE = 7135, average relative MSE = 1.313%.

The adjustment of (1) to the empirical data for the parameters given above is presented in the right
panel of Fig. 3.
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Figure 3. Solution to (3) (left panel) and to (1) (right panel) fitted to experimental data.
The solid green line is a solution that minimises MSE. The dashed pink line is a solution
that minimises relative MSE. The blue dotted line is a solution for γ = 2.67 · 10−4 (the
parameter given in [1]). The rest of parameters defined by (5).

As we can see, for some parameters γ and β given above, the modified model fits the empirical
data better then the model proposed by Allison et al. Further research is needed to ascertain the
real values of β and γ for different initial conditions.

CONCLUSIONS
Depending on the values of the parameters kC , kE ,K, γ, one of the two discussed models is better
adjusted to empirically obtained data. It is essential to repeat the measurements in order to judge
which model is more plausible and predicts better the change of the number of the cancer cells in
time, depending on the initial condition. Further research is necessary to improve the model of the
interactions between tumour and effector cells. Cancer treatments exploiting immunotherapy may
significantly benefit from enhancing the discussed models.
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[4] E.P. Solomon, L.R. Berg, and D.W. Martin: Biologia, MULTICO Oficyna Wydawnicza, Warszawa, 2007.
[5] T.L. Whiteside: Immune suppression in cancer: Effects on immune cells, mechanisms and future therapeutic interven-

tion, Seminars in Cancer Biology 16 (2006), 3–15.
[6] V.A. Kuznetsoz, M.A. Taylor, V.A. Kuznetsoz, and A.S. Perelson: Nonlinear dynamics of immunogenic tumors: Pa-

rameter estimation and global bifurcation analysis, Bulletin of Mathematical Biology 56 (1994), 295–321.
[7] K. Roesch, D. Hasenclever, and M. Scholz: Modelling lymphoma therapy and outcome, Bulletin of Mathematical

Biology 76 (2014), 401–430.


