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ABSTRACT
The sex of some species, including crocodiles, is determined by the incubation temperature of the egg during
gestation. In this article a mathematical model describing the evolution of crocodile population is presented.
The considered model is a modification of the one presented in the book by J.D. Murray and it includes
periodic changes of the number of available nesting sites. The model consists of four non-autonomous
ordinary differential equations. The existence and global asymptotic stability of the periodic solution is
proven. In addition, results are illustrated by numerical simulations conducted in Matlab c©.

MODEL DESCRIPTION
Unlike among mammals, the sex of crocodiles is determined by the conditions, mainly the tem-
perature, in which the egg incubates. Roughly speaking, the higher the incubation temperature is,
more males hatch. It is called temperature sex determination (TSD). For different species in the
order Crocodilia the ranges of temperatures in which females or males are hatched differ but it is
not relevant for us since the aim of the model is the qualitative, not the quantitative description
of this phenomenon. An important fact for the model construction is that the nests’ temperature
increases with the distance from the river, so the ratio of males to females hatched increases with
an increasing distance from the river.

In this paper we consider a modification of the model presented in [3, Chapter 4]. We briefly
remind the construction of the model. It is assumed that the nesting region can be divided into
three subregions such that in the region I located near the river (we call it wet marsh), where the
incubation temperature is low, only females are hatched. In the region II that lies further (we call
it dry marsh), the incubation temperature is higher and the same numbers of males and females
are hatched. Finally, in the region III (dry levees), where the incubation temperature is high, only
males are hatched.

Biological observation indicates that females choose a nesting site with thermical conditions
optimal for a three-month incubation period. Moreover, they prefer to lay eggs in the environ-
ment as similar to the environment they were hatched as possible [4], so they prefer to choose
regions I and II. This justifies the assumption that the capacity of the region I is limited; otherwise
it would be possible to get an all-female population. Moreover, we assume that there are enough
males to fertilize all the females. As in Murray’s book [4], functions f1(t) and f2(t) denote the
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number of females incubated in regions I and II respectively, while m2(t) and m3(t) — the num-
ber of males incubated in regions II and III, respectively. The effective birth rate b and the death
rate p are assumed to be positive constants such that b > p which prevents the population from
vanishing.

By k1, k2 and k3 we denote the capacities of regions I, II and III, respectively. In [3] the model
with constant ki, = 1, 2, 3 was considered. In this paper we consider the modification of that model
that takes into account periodic floodings influencing the capacity of the region I, as in [5]. We
assume that k1 is a continuos periodic function that fluctuates around some mean value k, while k2
and k3 are positive constants. The modified model is a system of four ordinary differential equation
(for detailed derivation see [3])
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A positive (because we consider the population) initial condition [ f1(0), f2(0),m2(0),m3(0)] will
close the system. It can be easily seen that the right hand side of system (1) is Lipchitz continuous
with respect to ( f1, f2,m2,m3), thus solutions of the system (1) exist and are unique. Note also that
Eq. (1a) can be written in an exponential form, which implies f1(t) > 0 for all t ≥ 0. Moreover
Eq. (1a) does not depend on f2, m2 and m3, and the derivative of f1 is negative for f1 sufficiently
large. This proves that the solution of Eq. (1a) can be prolonged on the whole �. Similarly, we
can prove that f2, m2 and m3 are positive for all t ≥ 0 and can be prolonged on the whole �.

In the next Section we prove that there exists a periodic solution of (1a) and later we prove
that this solution is locally asymptotically stable. Finally, we present results of some numerical
simulations.

EXISTENCE AND STABILITY OF PERIODIC SOLUTIONS
First, we formulate precise assumptions on the function k1.
(A1) k1 : �→ (0,+∞) is continuous;
(A2) k1 is T -periodic, that is for all t ∈ � we have k1(t) = k1(t + T ), T > 0.
Denote also

k̄1 = max
t∈(0,T ]

k1(t), k1 = max
t∈(0,T ]

k1(t).

Theorem 1. Let assumptions (A1)–(A2) be fulfilled, and b > p > 0. Then there exists a periodic
solution of Eq. (1a).

First we prove two lemmas.

Lemma 2. Let assumptions of Theorem 1 be fulfilled and let f1 be a solution of (1a) with

f1(0) >
2b − p

p
k̄1 epT . (2)

Then f1(T ) < f1(0).

Proof. From Eq. (2) and definition of k̄1 it follows that

∀t ∈ (0,T ] f1(0) ≥
2b − p

p
k1(t) ept . (3)
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Because k1 is strictly positive due to Assumption (A1), we have k1(t)
k1(t)+ f1(t) > 0 for all t ∈ (0,T ].

Hence, f ′1(t) > −p f1(t). Because f1(t) > 0, the Gronwall inequality yields

∀t ∈ (0,T ] f1(t) > f1(0) e−pt .

From Eq. (3) and above comments one concludes that
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Simple algebraic manipulations give
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Therefore, f1 is decreasing, so f1(T ) < f1(0), which completes the proof. �

Lemma 3. Take ε ∈ (0, 1) such that
p
b
< (1 − ε). (4)

Let assumptions of Theorem 1 be fulfilled and let f1 be a solution of (1a) with
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p
k1 e(p−b)T . (5)

Then f1(T ) > f1(0).

Proof. From Eq. (1a) and Assumption (A3) it follows that

∀t ∈ (0,T ] f ′1(t) < (b − p) f1(t).

Because f1(t) > 0, b > p, the Gronwall inequality yields

∀t ∈ (0,T ] f1(t) < f1(0) e(b−p)t ≤ f1(0) e(b−p)T . (6)

Applying Eq. (5) to (6) one concludes that
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p
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Simple algebraic manipulations and the inequality b < 1 < 1
1−ε give for all t ∈ (0,T ]
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Therefore, f1 is increasing, so f1(T ) > f1(0), which completes the proof. �

Proof of Th. 1. From lemmas 2 and 3 and the continuity of the solution of Eq. (1a) with respect
to the initial condition it follows that there exists an initial condition f1(0) such that f1(T ) = f1(0).
It means that Eq. (1a) has a periodic solution. �

Theorem 4. The periodic solution f̄1(t) of Eq. (1a) is unique. If f1 is a solution of Eq. (1a) for
a positive initial condition, then lim

t→+∞
| f̄1(t) − f1(t)| = 0.

Proof. We adapt here the method used in [1] for equations with delay. First, we prove, that every
solution of Eq. (1a) with positive initial condition converges to some periodic solution. Writing
Eq. (1a) in an exponential form we have for any ξ, t ∈ �

f1(t + ξ) = f1(t) exp
(∫ t+ξ

t
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)
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Due to Theorem 1 there exists a periodic solution f̄1, so for them we have f1(t) = f1(t + T ), and
therefore, due to (7) ∫ t+T

t
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− p
)

ds = 0. (8)
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Consider now a solution of Eq. (1a) different from f̄1. Because of the uniqueness of solutions of
Eq. (1a) we have for all t ∈ � either f1(t) > f̄1(t) or f1(t) < f̄1(t). Assume that the first inequality
holds. Thus, due to (7) and (8) we have

f1(t + T ) = f1(t) exp
(∫ t+T

t
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k1(s) + f1(s)

− p
)
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)
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(∫ t+T

t
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− p
)
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)

= f1(t).

Thus, the sequence f1(nT ) is a strictly decreasing bounded sequence so it has a limit. Denote this
limit by ζ ≥ f̄1(0). Moreover, if f̃1 is a solution of Eq. (1a) with an initial condition f̃1(0) = ζ,
then f̃1(T ) = ζ. However, if ζ > f̄1(0) would hold then again using (7) and (8) we would obtain
f̃1(T ) < f̃1(0) which is a contradiction. This completes the proof. �

Corollary 5. Let assumptions of Theorem 1 be fulfilled. Then there exits a unique periodic solution
( f̄1, f̄2, m̄2, m̄3) of the system (1) that is globally stable in (0,+∞)4.

Proof. Note that in the proofs of Theorems (1) and (4) we have used only the facts that the function
k1/(k1 + f1) is decreasing in f1, derivative of f1 is negative for large f1 and positive for sufficiently
small f1. After solving the equation for f1, we can reduce Eq. (1b) to one that fulfills such assump-
tions. We can do the same with Eqs. (1c) and (1d). �

NUMERICAL SIMULATIONS
We have shown that there exists a periodic solution of system (1) which attracts all positive solu-
tions of the system. In order to illustrate the behaviour of the system (1) numerical simulations
were conducted. To do that we had to choose a particular form of the function k1. To avoid the
influence of other factors as well as dependence of results on the initial conditions, we decided
to solve the system with a constant k1 for t < 50 and later introduce the effect of the floods. The
function k1(t) is continuous for all t. In [2] ratios between available nests sites in all three regions
are given. Thus, we rescaled all variables of the system (1) by a number of total available nesting
sites. As a result, ki can be interpreted as a fraction of the nesting sites available in the region I,
II and III. Thus, as in [2, 5], the following values of parameters are chosen:

b = 0.826, p = 0.0928, k1,av = 0.797, k2 = 0.136, k3 = 0.067, (9)

and

k1(t) =

k1,av, for t ≤ 50
k1,av + 0.79 sin

(
t−50
10

)
, for t > 50.

System (1) was solved with the following initial conditions (they were taken arbitrarily since this
choice does not influence the population dynamics after some time):

f1(0) = 0.1, f2(0) = 10, m2(0) = 10, m3(0) = 10. (10)

The floodings are introduced after the time t = 50. The function k1 oscillates for t > 50 with
the period 20π ≈ 63 and the amplitude 0.79, which was chosen in a way that makes k1(t) positive
for all t as the region capacity cannot be negative. During the flooding’s peak, k1(t) reaches its
minimal value 0.007 which is close to 0. When the region I is under water, females must migrate
to next regions, increasing the competition for nesting sites. We want to emphasize that the units
are arbitrary since the aim of the simulation was to show general trends, not focus on specific
biological data.

The results confirmed the conjecture that all the solutions of the system converge to the periodic
one. Furthermore, this solution does not depend on the chosen initial conditions which also was
checked using the same program. In Figs. 1, 2 and the left panel of Fig. 3 the dynamics of the
populations in all regions were shown. The left panel of Fig. 3 illustrates populations of males
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Figure 1. Left panel: dynamics of the female population in the region I. Right panel:
dynamics of the female population in the region II.

Figure 2. Left panel: dynamics of the male population in the region II. Right panel:
dynamics of the male population in the region III.

in regions II (red line) and III (blue dashed line), beginning from the time t = 50 in order to
draw attention to periodic oscillations and differences between these two regions. In this picture
one can see that male populations in regions II and III oscillate with an agreement in phase. After
closer investigation the oscillations of the population of females in the region II also have the same
phase. However, there is a clear phase difference between oscillations of the number of females in
the region I and other populations

It can be noticed that although the initial number of females in the region I was smaller than
numbers of crocodiles in other regions, they quickly became the largest population. Moreover, the
number of females in the first region oscillates with much greater amplitude than other populations.
One of the reasons for such a behaviour is that only this region is affected directly by floods. In the
right panel of Fig. 3 the dynamics of the sex ratio in the whole population presented. In addition,
Fig. 3 shows that the sex ratio oscillates between around 0.1 and 0.3 which confirms biological
observations mentioned in [3]. It means that in average one male gets a chance to fertilize 7–8
females. It might have been one of the reasons why crocodiles have survived for millions of years,
unlike species whose sex is determined genetically (GSD — Genetic Sex Determination). This
could be due to the fact that in case of a catastrophe surviving males fertilize many females which
leads to a big number of hatchlings.

CONCLUSIONS
Periodic floodings of the region I result in periodic solutions of the system of equations. The
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Figure 3. Left panel: dynamics of the male populations in regions II and III. Right panel:
the changes in the sex ratio.

sex ratio of crocodile population also oscillates periodically with maxima during the flood and
minima during the time without flooding. Moreover, it was proven that periodic solutions are
locally asymptotically stable which was confirmed by numerical simulations.

The proposed model could be further developed in a number of ways. Firstly, one might intro-
duce the age structure which would lead to equations with delays. Also, another factors influencing
the population could be researched into, such as human activity including hunting or destroying
crocodiles’ natural habitat. Additionally, another model for floodings may be proposed, namely
one introducing the noise in the system of equations; this is due to the random character of this
phenomenon. The stochastic model of floods’ influence on the population would be useful for
biologists and ecologists.
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