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ABSTRACT
We consider the model of angiogenesis process proposed by Bodnar and Foryś (2009) with time delay in-
cluded into the vessels formation process, where delay is distributed according to the Erlang distribution.

INTRODUCTION
Angiogenesis is a process of formation of new vessels from pre-existing ones. It is a normal
and vital process in growth and development of animal organisms, required during the repair
mechanism of damaged tissues. On the other hand, it is essential in the transition of avascular
forms of solid tumours into metastatic ones. When the tumour approaches 1-2 mm3 of volume,
necrotic core is formed and the growth process is slowed down [6]. Then, cancer cells start to
secrete angiogenic factors yielding new vessels formation. The supply of nutrients allows cancer
growth and help to remove the metabolism waste products. Understanding the mechanisms of
angiogenesis might give a possibility to improve cancer treatment since good functioning blood
vessels allow anti-cancer drugs to penetrate better the tumour structure, and hence reduce the
tumour mass.

In this paper we consider the model of tumour angiogenesis proposed in [1] and studied in [4]
(in the context of discrete delays) with the distributed delay of the vessels formation, assuming the
Erlang distribution for stability analysis. Thus we consider the following system of the first order
differential equations with distributed delay

Ṅ(t) = αN(t)
(
1 −

N(t)
1 + f1(E(t))

)
,

Ṗ(t) = f2(E(t))N(t) − δP(t),

Ė(t) =

(∫ ∞

0
k(s) f3(P(t − s))ds − α

(
1 −

N(t)
1 + f1(E(t))

))
E(t),

(1)

where N(t), P(t), E(t) and α describe the tumour size, the amount of regulating proteins, the
effective vessel density, and the tumour proliferation rate respectively. It is assumed that functions
fi are locally Lipschitz and there exist positive constants a2, a3, b1, b3 and m3 such that
(A1) f1 is an increasing function such that f1(0) = 0, limE→+∞ f1(E) = b1 > 0,
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(A2) f2 is a decreasing convex function with f2(0) = a2 > 0 and limE→+∞ f2(E) = 0,
(A3) f3 is an increasing function with f3(0) = −a3 < 0, f3(m3) = 0 and limP→+∞ f3(P) = b3.
For detailed derivation of the model described by (1) we refer to [1, 4]. We assume the function
k(s) : [0,∞)→ [0,∞) is a probability density with finite expectation, that is∫ ∞

0
k(s) ds = 1 and 0 <

∫ ∞

0
sk(s) ds < ∞.

To close the system we need to define initial conditions. Let C = C((−∞, 0],�3) be the space of
continuous functions defined on the interval (−∞, 0] with values in �3, and as C+ we define the
subspace of C that consist of the functions with non-negative values. Because our delay distribu-
tion has infinite support, we need to control the behaviour of the initial condition at the infinity
(see [7]). To this end, let define a Banach space Φ,

Φ =

{
φ ∈ C : lim

s→−∞
φ(s) es = 0 and sup

s∈(−∞,0]
|φ(s) es | < ∞

}
, ‖φ‖Φ = sup

s∈(−∞,0]
|φ(s) es |,

and we consider the initial function from the set Φ+ = Φ ∩ C+.

MODEL ANALYSIS
In this section we consider basic properties of system (1) for general kernel k(s) and study stability
in the case of Erlang distribution.

Theorem 1. Let the functions fi, i = 1, 2, 3, fulfil conditions (A1)–(A3). For an arbitrary ini-
tial function φ = (φN , φP, φE) ∈ Φ+ there exists unique solution in Φ+ defined on t ∈ [0,+∞).
Moreover, the following inequalities

Nmin ≤ N(t) ≤ Nmax ,

0 ≤ P(t) ≤ max{
a2

δ
Nmax , φ2(0)},

0 ≤ E(t) ≤ φ3(0) exp((b3 + α(Nmax − 1))t),

(2)

hold for all t ≥ 0, where

Nmin = min{1, φN(0)}, Nmax = max{φN(0), 1 + b1}.

Proof. It is easy to show that the right-hand side of system (1) fulfils local Lipschitz condition,
which yields the local existence of the solution to (1). Non-negativity follows easily from the form
of the system (1).

The estimation of the solutions are obtained in the same way as in [4]. Then the global existence
of the solutions can be proved by the use of Theorem 2.7 from [7, Chapter 2]. �

Analysis of the existence of steady states is the same as in [3]. We summarise the results shortly.
The steady states

A = (0, 0, 0) and B =
(
1,

a2

δ
, 0

)
always exist. Moreover, there can exist positive steady states Di = (N̄i; m3; Ēi), with N̄i = 1 +

f1(Ēi), and Ēi are solutions of the equation

g(x) = f2(x)(1 + f1(x)) − δm3 = 0. (3)

The stability of the steady state A and B does not depend on time delay, as it was in the case of
discrete delays, see [4]. We recall these results without a proof.

Proposition 2. Let the functions fi ∈ C1, i = 1, 2, 3, fulfil conditions (A1)–(A3). Then the trivial
steady state A of system (1) exists and is unstable independently of the model parameters. The
semi-trivial steady state B of system (1) is locally asymptotically stable for a2 < δm3 and unstable
for a2 > δm3.
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Stability of positive steady states
Local qualitative properties of the positive steady state Di = (N̄i; m3; Ēi) of system (1) in the case
of discrete delays have been studied in [3]. In this section, we focus on examining the stability
and instability of the positive steady state Di in the case of distributed delay. We consider Erlang
probability distribution, which is a special type of Gamma distribution with the shape parameter
being a natural number. The kernel of Erlang distribution is given by

k(s) =

 an(s−σ)n−1

(n−1)! e−a(s−σ), s ≥ σ,
0, otherwise,

(4)

where a, σ > 0, and a is a scaling parameter. For the case σ = 0 we call this distribution the non-
shifted Erlang distribution while, to the case σ > 0 we refer as to the shifted Erlang distribution.
The mean value of the non-shifted Erlang distribution is given by n

a , while the variance is equal
to n

a2 . Then, the average delay is equal to this mean and the deviation measures the degree of
concentration of the delay about the average value. On the other hand, for the shifted Erlang
distribution the mean value is σ+ n

a , while the variance is the same as for non-shifted one. Taking
the limit n → +∞ and keeping n/a = τ constant we obtain system (1) with discrete delay τ. By
direct calculation, it is found that

∫ ∞
0 k(s) e−λs ds = an

(a+λ)n e−λσ.
The stability matrix of system (1) for the steady state Di reads

M(N̄, P̄, Ē) =


−α − λ 0 αd1
f2(Ēi) −δ − λ −N̄i d2

bαĒi Ēid3
an

(a+λ)n e−λσ −αbĒid1 − λ

 ,
where

b =
1

1 + f1(Ēi)
, d1 = f ′1(Ēi) > 0, d2 = − f ′2(Ēi) > 0, d3 = f ′3(m3) > 0.

Consequently, the characteristic quasi-polynomial has the form

W(λ) = λ3 +
(
C1 + C3

)
λ2 +

(
C2 + δC3

)
λ+

(
C4λ + αC4 −C3C5

) an

(a + λ)n e−λσ, (5)

where

C1 = δ + α, C2 = αδ, C3 = αβd1, C4 =
βd2d3

b2 , C5 = δd3m3, β = bĒi.

Conditions (A1)–(A3) guarantee the positivity of d1, d2, d3, b and β. Consequently, Ci > 0 for
i = 1, 2, ..., 5.

Theorem 3. Let the functions fi ∈ C1, i = 1, 2, 3, fulfil conditions (A1)–(A3). If g′(Ēi) > 0, where
g is given by (3), then the positive steady state Di = (N̄i; m3; Ēi) is unstable.

Proof. We show that the characteristic function W(λ) has at least one positive real root. The proof
of Theorem 3.4 in [3] showed that the sign of αC4−C3C5 is reverse to the sign of g′(Ēi). Therefore,
the assumption g′(Ēi) > 0, implies that W(0) < 0. Further, it is easy to see that W(λ) → +∞, as
λ → +∞. Then there exists at least one λ0 > 0 such that W(λ0) = 0, and this implies that Di is
unstable. �

Note that if αC4 , C4a + C3C5, then λ is zero of W(λ) if and only if λ is zero of

W1(λ) = (a + λ)n
(
λ3 +

(
C1 + C3

)
λ2 +

(
C2 + δC3

)
λ
)

+ an
(
C4λ + αC4 −C3C5

)
e−λσ . (6)

Because the case αC4 = C4a+C3C5 is non-generic, we do not consider it here, and in the following
we assume αC4 , C4a + C3C5. Thus, studying the stability of the positive steady states Di of
system (1) is equivalent to study zeros of the polynomial W1 defined by (6).
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Proposition 4. Assume that the functions fi ∈ C1, i = 1, 2, 3, fulfil conditions (A1)–(A3). If n = 1,
σ = 0, g′(Ēi) < 0, and Q1Q2Q3 > Q2

3 + Q2
1Q4, where

Q1 = C1 +C3 +a, Q2 = C2 +δC3 +a(C1 +C3), Q3 = a(C2 +δC3 +C4), Q4 = a(αC4−C3C5), (7)

then the positive steady state Di is locally asymptotically stable.

Proof. For n = 1 and σ = 0, the polynomial W1 reads

λ4 + (C1 + C3 + a)λ3 + (C2 + δC3 + a(C1 + C3))λ2 + a(C2 + δC3 + C4)λ + a(αC4 −C3C5) = 0,

and the assertion of the proposition comes directly from the Routh-Hurwitz Criterion. �

Now, we try to answer the question when the assumptions of Proposition 4 are satisfied. To
simplify calculations, let us denote

η1 = C1 + C3, η2 = C2 + δC3, η4 = αC4 −C3C5.

Under the assumptions of Proposition (4) we have η4 > 0, which suggest stability for sufficiently
large a due to continuous dependance.

With this notation we have

Q1 = η1 + a, Q2 = η2 + aη1, Q3 = a(η2 + C4), Q4 = aη4, Qi > 0 for i = 1, . . . , 4.

Now, the R-H condition reads

a
(
η1 + a

)(
η2 + aη1

)(
η2 + C4

)
> a2(η2 + C4

)2
+ a

(
η1 + a

)2
η4. (8)

Since a > 0 we can divide both sides of (8) by a, obtaining equivalent condition

a2
(
η1

(
η2 + C4

)
− η4

)
+ a

((
η2 + C4

)(
η2

1 −C4
)
− 2η1η4

)
+ η1

(
η2

(
η2 + C4

)
− η1η4

)
> 0.

Notice that the coefficient of a2 is positive. Indeed, using the definitions of η1, η4 and C1 we have

η1
(
η2 + C4

)
− η4 = η1η2 + (α + δ + C3)C4 − αC4 + C3C5 = η1η2 + (δ + C3)C4 + C3C5 > 0.

Because the coefficient of a2 is positive, we have only three possibilities:
(1) η2(η2 +C4)/η1 < η4 — there exists exactly one critical value of a, below which the steady

state is unstable and above which it is stable (average delay is 1/a in this case);
(2) η4 < η2(η2 + C4)/η1, and η4 >

(
η2 + C4

)(
η2

1 − C4
)
/(2η1) and the discriminant of the

quadratic polynomial is positive — there exists two critical values of a;
(3) η4 < η2(η2 + 1)/η1, and either η4 <

(
η2 + C4

)(
η2

1 − C4
)
/(2η1) or the discriminant of the

quadratic polynomial is negative — the steady state is stable for all a.
To obtain two changes of stability, we need to have((

η2 + C4
)(
η2

1 −C4
)
− 2η1η4

)2
− 4η1

(
η2

(
η2 + C4

)
− η1η4

)(
η1

(
η2 + C4

)
− η4

)
> 0, (9)

together with
(η2

1 −C4)(η2 + C4)
η1

< η4 <
η2(η2 + C4)

η1
.

Inequality (9) is equivalent to(
η2+C4

)2(
η2

1−C4
)2
−4η1η4

(
η2+C4

)(
η2

1−C4
)
−4η2

1η2
(
η2+C4

)2
+4η1η2η4

(
η2+C4

)
+4η3

1η4
(
η2+C4

)
> 0,

and dividing by η2 + C4 and collecting terms with η2
1 −C4 we obtain(

η2 + C4
)(
η2

1 −C4
)2
− 4η1η4

(
η2

1 −C4
)

+ 4η1

(
η4

(
η2 + η2

1
)
− η1η2

(
η2 + C4

))
> 0. (10)

Notice that the free and linear terms of (10) are positive under the assumption

η4 >
η1η2

(
η2 + C4

)
η2 + η2

1

and η2
1 < C4.

We have η2
1 −C4 = (α + δ + αδ)2 − βd2d3/b2, and it is negative for sufficiently large d2d3.
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Eventually, two stability switches are possible under the assumptions
η1η2

(
η2 + C4

)
η2 + η2

1

< η4 <
η2(η2 + C4)

η1
and η2

1 < C4.

Proposition 5. Let the functions fi ∈ C1, i = 1, 2, 3, fulfil conditions (A1)–(A3). If
(i) Di is unstable for σ = 0, then it is unstable for all σ > 0;

(ii) Di is stable for σ = 0, then there exists σ0 > 0, such that Di is stable for σ < σ0, and Di is
unstable for σ > σ0. Furthermore, if fi ∈ C2, i = 1, 2, 3, then Hopf bifurcation occurs at σ0.

Proof. For the characteristic function W1 given by (6), we define the auxiliary function

F(ω) = ω2(a2 + ω2)n
(
ω4 + ((C1 + C3)2 − 2(C3δ + C2))ω2 + (C3δ + C2)2

)
−

− a2nC2
4ω

2 − a2n(C4α −C3C5)2.

Notice, that
(C1 + C3)2 − 2(C3δ + C2) = α2(1 + βd1)2 + δ2 > 0.

Using this equality and substituting y = ω2 we get

F(y) = y
(
a2 + y

)n
(
y2 + (α2(1 + βd1)2 + δ2)y + (C3δ + C2)2

)
− a2nC2

4y − a2n(C4α −C3C5)2

Clearly, F(y) has at least one positive root, since the coefficient of y with the highest power is
positive, while the free term is negative. We show that this roost is a unique simple positive root.
Note, that all coefficients of F are positive with the exception of the free term which is negative and
the coefficient of y, which sign is not determined. However, in both cases, there exists exactly one
change of sign in the coefficients of the polynomial F, and the Descartes’ Rule of Signs implies
that F has a unique and simple positive root. This, together with Theorem 1 from [5], completes
the proof. �

NUMERICAL SIMULATIONS AND DISCUSSION
For the numerical simulation we choose functions fi and parameters values proposed in [3], that is

f1(E) =
b1En

c1 + En , f2(E) =
a2c2

c2 + E
, f3(P) =

b3(P2 − m2
3)

m2
3b3

a3
+ P2

,

and

a2 = 0.4, a3 = 1, b1 = 2.3, b3 = 1, c1 = 1.5, c2 = 1, α = 1, δ = 0.34. (11)

For these values of parameters there exist three positive steady states: D1 ≈ (1.04, 1.05, 0.17),
D2 ≈ (1.37, 1.05, 0.54) and D3 ≈ (2.67, 1.05, 1.99). Now, we can influence the model dynamics
changing the value of δ. This parameter could reflect an application of some treatment that blocks
VEGF activation, which can be modelled by the increase of clearance rate. Then the steady state
D1 exists for 0.331 < δ < 0.381, C3 for δ < 0.368 and D2 for 0.331 < δ < 0.368. The steady state
D2 is unstable, while D1 and D3 are stable for the case without time delay. In the case of discrete
delay, the steady state D1 loses its stability for: τ ≈ 3.09 for δ = 0.331, τ ≈ 3.37 for δ = 0.34,
and τ ≈ 6.00 for δ = 0.38, while for the steady state D3 critical values are τ ≈ 2.24 for δ = 0.3,
τ ≈ 2.27 for δ = 0.34, and τ ≈ 2.39 for δ = 0.36. In Fig. 1 we have presented the values of critical
average delay for Erlang distribution with various m. The average delay is calculated as m/a. For
the case m = 1 stability change does not occur for these values of parameters. For the steady state
D3, the critical average delay is about 4 for m = 5 and δ = 0.3 (that is almost twice as in the
discrete case), and 7.07 for δ = 0.34. The region below the curves are stability regions. Notice
that this delays are much larger than for the discrete case.

In Fig. 2 we have shown exemplary solution of system (1) for parameters given by (11) and
τ = 10. It can be seen that for m = 1 the solution converges to the steady state very fast, while for
m = 5 it seems that oscillations are sustained.
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Figure 1. Critical average delay, that is m/acr for various values of m in dependance on
δ. In the left-hand side panel the graphs for the steady state D1 are presented, while in
the right-hand side panel for the steady state D3.
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Figure 2. Solution of system (1) for parameters given by (11) and τ = 10.
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