MATHEMATICAL MODEL SUGGESTS A WAY TO ASSESS LOW
GRADE GLIOMA MALIGNANCY

Magdalena Bogdańska¹, Marek Bodnar¹, Juan Belmonte-Beitia², Michael Murek³,
Philippe Schucht³, Jürgen Beck³ and Víctor M. Pérez-García²

¹Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,
ul. Banacha 2, 02-097 Warsaw, Poland
²Departamento de Matemáticas, Universidad de Castilla-La Mancha,
ETSI Industriales, Avda. Camilo José Cela 3, 13071 Ciudad Real, Spain
³Universitätsklinik für Neurochirurgie,
Bern University Hospital, CH-3010 Bern, Switzerland
¹m.boganska@mimuw.edu.pl

ABSTRACT

Low grade gliomas are infiltrative and incurable primary brain tumours with typically slow evolution. These
tumours usually occur in young and otherwise healthy patients, bringing controversies in treatment planning
since aggressive treatment may lead to undesirable side effects in patients with very slowly growing tumours.
Thus, for management decisions it would be valuable to know how fast LGGs grow and how we can test their
response to standard therapies with the lowest possible toxicity. Here, we propose a mathematical model of
low grade glioma growth and its response to chemotherapy which agrees with available medical data. The
model predicts, and the clinical data confirm, that the speed of a response to chemotherapy is related to the
tumour aggressiveness. Thus, the response to a few chemotherapy cycles upon diagnosis might be used to
predict the speed of the tumour growth and further prognosis.

ACKNOWLEDGEMENTS

This research was supported by the Polish Ministry of Science and Higher Education, within the
Iuventus Plus Grant: "Mathematical modelling of neoplastic processes" grant No. IP2011 041971.

REFERENCES

Anaplastic Oligodendroglioma: Long-Term Follow-Up of EORTC Brain Tumor Group Study 26951, Journal of Clinical
(2010), 224–231.
Oncology 4 (2009), 69–79.
[6] C.R Oliva et al: Acquisition of Chemoresistance in Gliomasis Associated with Increased Mitochondrial Coupling and
Decreased ROS Production, PLoS ONE 6 (2011).


