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ABSTRACT
In this paper we consider a simple model of a biochemical signalling cascade as a communication chan-
nel. We apply the information theory approach to measure the input-output information relationship of such
a channel, and to investigate how fluctuations in the level of network components affect its information pro-
cessing capacity. The results indicate that information theory is a promising approach to analyse information
processing of biochemical communication channels based on the amount of inputs they can distinguish in
a certain level of intracellular fluctuations.

INTRODUCTION
Biochemical signalling network is computable representative of a complex biological system of
intracellular protein-protein interactions. It coordinates cellular communication with its microen-
vironment. In this network, extracellular incoming signals are transduced from the cell membrane
to the nucleus by a cascade of chemical reactions. Based on the information processed by the
signalling network, cell can assume in response a different fate and modulate its phenotype.

Information theory (IT) is a branch of applied mathematics that focuses on the analysis of how
communication takes place in an information channel [10]. The notion of Shannon’s commu-
nication channel can be applied in a wide spectrum of communication forms, such as computer
science, telecommunications [2, 6] as well as in molecular and systems biology [5, 9]. The infor-
mation is quantified by bits, which is a basic unit in the field of computer science. A bit can have
only two values of information, either 0 or 1. In a biological context, a single bit can be defined
as the ability of a downstream process of a network to distinguish between two levels of incoming
signals: high or low.

Biochemical signalling networks are noisy systems. In a noisy system the response to the
input is relayed nondeterministically. Nonetheless, noisy information transduction can still be
a reliable form of communication in biochemical systems [4, 8]. The source of noise in biochem-
ical networks stems from chemically interacting molecules. Many important cellular processes,
such as transcription, cellular respiration and apoptosis require collisions and bindings of discrete
molecules. The distances between molecules within a cell may vary due to their location, and as
a result the timing of their reaction varies as well. The magnitude of these fluctuations increases
significantly when the copy number of the molecules is low. Low copy-number and diffusive ef-
fects result in biochemical reactions occurring randomly. Such noise may be sufficient to vary
the gene expression within the cell, and to create switching between one cell fate and another [7].
Transduction capacity of a single signalling pathway is also very limited due to intracellular noise.
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Individual signalling pathways are able to process the amount of information that allows only for
binary cellular decisions [3].

In this paper we investigate the impact of variability of network components on the capability of
signalling networks to process the information. Section 2 explains how to apply the IT approach on
biochemical channel analysis, and Section 3 introduces the case study of it. Section 4 and Section
5 demonstrate our results and conclusions. The approach presented in this paper was inspired by
the analysis of telecommunication channels and applies to biochemical channels as well.

INFORMATION THEORY IN BIOLOGICAL CONTEXT
Three terms are needed to fully specify the biochemical channel: input alphabet, output alphabet
and a matrix of transduction probabilities. In other words one needs to define a set of possible
discrete input and output concentrations as well as a scheme of probabilities of particular responses
for individual input concentrations.

Scheme of probabilities of responses can be found by sampling a histogram of possible output
concentrations for each input concentration in a channel. The marginal probabilities of each output
distribution can be used to find the entropy of a channel. Entropy (H) defines the ability to process
information in a theoretical, noiseless channel. In the case of a biochemical signalling network,
it is a channel where no intracellular noise would ever appear. Entropy of such a channel is
defined as H(X) = −

∑n
k=1 p(X = xi) log2 p(X = xi). Here, p(X = xi) are marginal probabilities

found for all n histograms of output concentrations. Mutual information (MI) is defined as MI =

H(Y)−H(Y |X). It describes the ability to process information in a channel affected by intracellular
fluctuations. H(Y |X) is the conditional entropy of the output (Y) when the input (X) is known [4].
MI of a noisy channel can be interpreted as the amount of information that theoretically could be
processed correctly by the channel less the amount of information mistaken due to the noise. When
increasing intracellular fluctuations we increase the part of information that is mistaken. In ideal
conditions, where no noise ever appears no information would be mistaken. In such conditions
MI would be maximised by entropy.

The amount of inputs distinguishable by the channel equals 2C . Here, C is the channel capacity,
a quantity that maximises mutual information when all inputs appear with equal probability.

CASE STUDY
As the example of a biochemical communication channel we selected a G-protein (guanosine
nucleotide-binding protein) pathway. This pathway is a signalling cascade that governs many
cellular functions, such as mitogenesis, cytoskeletal organisation and nuclear transport. Activated
mutants of GTPases have been found in 10-20 % of all human tumours.

Fig. 1 presents the model that consists of two protein species, g1 and g2. The former is phos-
phorylated in the presence of a ligand, i.e. the input signal (gIN). Phosphorylation of the latter
is nonlinearly activated by g1p – the active (phosphorylated) form of g1. De–phosphorylation
is catalysed by phosphatases, which are not explicitly included in the model. All reactions are
modelled using Michaelis-Menten kinetics which is a basic approximation of enzyme-catalysed
reactions. In accordance with this kinetics, vi parameter represents the maximum rate of i-th re-
action achieved by the system. The constant Ki is the substrate concentration at which the rate of
reaction is half of vi. The Michaelis-Menten kinetics is frequently used to simulate biochemical
reactions involving a single substrate. The basic assumption of this model is that the concentration
of the enzyme is much lower than the concentration of the substrate.

Two levels of a signalling cascade can be linked by the nonlinear activation, which takes the
form:

nonlinear activation =
k13 + A13[Substrate]

k13 + [Substrate]
. (1)
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Figure 1. A model of a generic two-tier G-protein cascade without feedback regulation

Here, k13 is a reaction rate coefficient, and A13 is the activation coefficient. If A13 is greater than 0,
the formula represents activation. Otherwise, the formula represents inhibition.

Additionally, both positive and negative feedback loops may be included in the model. This
topological extension allows to generate various dynamic properties such as oscillations and bista-
bility [11]. Therefore, despite its simplicity the model may also reflect more complex behaviours
of large biochemical networks such as a MAPK (Mitogen-activated protein kinase) network.

The system presented in Fig. 1 can be described by the following set of ordinary differential
equations (ODE):

d g1p

d t
= v1

g1

g1 + K1
gIN − v2

g1p

g1p + K2
,

d g2p

d t
= v3

g2

g2 + K3

k13 + A13g1p

k13 + g1p
− v4

g2p

g2p + K4
. (2)

Using the analytical steady-state solution, the dose response curve of the system presented
in Eq.(2) was calculated. It represents the functional relationship between the single substrate
concentration (input) and the steady-state concentration of response of the system (output). It
can be both simulated numerically and measured experimentally by various techniques, such as
Western blot [3].

The dose response curve of system modelled by Eq. (2) forms a sigmoidal curve. A good fit
was found 1 utilising a Hill function (Fig. 2), which was introduced as a representative of the dose
response curve for all investigations. The Hill function is defined as:

f (gIN) = Rmax
gh

IN

xh
50 + gh

IN

+ basal, (3)

where, Rmax relates to the maximum response concentration, x50 is the argument for which the
function assumes half of its maximum response concentration and h is a coefficient that specifies
the steepness of the curve. Additionally the basal response level was introduced.

To represent variability in the GTPase system the total amount of components g1tot and g2tot
was assumed to vary according to a lognormal distribution. The parameter values of the lognormal
distributions were set to experimentally measured mammalian protein expression noise [1]. We

1Fitting curve was obtained using Mathematicar software
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Figure 2. The fitting Hill function to the dose response function. Dashed red
line: The dose response function of GTPase system (Fig. 1) evaluated at 10
discrete gIN values with the parameter set A13 = 5, k13 = 10, v1 = 1.8, v2 = 9.5,
v3 = 0.8, v4 = 2.6, K1 = 9, K2 = 3.7, K3 = 5.4, K4 = 7.2. Solid blue line: fitted
Hill function (Eq.(3)) evaluated with the fitting parameter set h = 12.3, x50 =

4.3, Rmax = 82.6, basal = 7.2.

chose the mean values of the lognormal distributions to be 1, which may correspond for example
to 1 nM. We also chose the arbitrary standard deviation (std) of each lognormal distribution by
finding the distribution parameters µ and σ that result in a distribution with a desired standard
deviation.

We estimated the total response variability by finding its one–standard–deviation boundries
within a population. Three dose response functions were computed assuming g1tot and g2tot as
g1,2tot=lognormal mean value, then g1,2tot = lognormal mean value + std and g1,2tot=lognormal
mean value − std respectively.

In order to represent different cases of variability by Hill fitting function, the standard deviation
of Hill parameter x50 was estimated. A very crude approximation assumes that the distribution of
x50 follows the same distribution as g1tot and g2tot. As a consequence, one standard deviation of
g1,2tot corresponds to one standard deviation of x50. In other words, the value of x50 parameter of
the response function with g1,2tot ± stdg1,2tot corresponds to x50 ± stdx50.

Standard deviations of x50 Hill parameters were estimated for different examples of system’s
response variability. If the ergodic hypothesis was assumed, these results can be applied not only
to model the protein variability of a population of cells, but also the protein variability of a single
cell over a long period of time.
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Figure 3. Heat map of values of channel capacity of a generic two-tier G-protein
cascade with change of standard deviation of x50 parameter and Hill coefficient.

Fig. 3 illustrates the results of computations of the channel capacity of a G-protein pathway (Fig.
1) as a heat map. The values on the x-axis correspond to the values of Hill coefficient (h) of the
Hill function (Eq. (3)). The changes of the Hill coefficient correspond to changes of steepness of
the dose response function. The higher the value of a Hill coefficient, the steeper the dose response
function becomes. Looking from the left to the right side of the heat-map one observes the changes
of the channel’s capacity with the changes of the dynamics of the dose response function. The left
side of the heat map corresponds to channels with nearly linear response, the right side corresponds
to channels with switch response.

The values on the y-axis correspond to the standard deviation values of the parameter x50 of
the Hill function. Standard deviations of x50 were sampled from the lognormal distribution with
a fixed mean value. The standard deviation values change from std x50 = 0.02 up to std x50 = 1.5.
Looking from bottom to the top side of the heat map one observes the changes in the channel’s
variability. The bottom side of the heat map corresponds to the channels with very low amount of
fluctuations, the top side of the heat map corresponds to channels with large amount of fluctua-
tions.

Colours on the heat map relate to values of channel capacity obtained for a range of channels
with different properties explained above. A channel with h = 2 and std x50 = 1.5 achieves
the same channel capacity as a channel with h = 10 and std x50 = 0.02. In other words, the
channel with mild response function and large value of intracellular variability can process the
same amount of information as a switch channel with a significantly lower value of intracellular
variability. Consequently, the channel with mild response can process more information than the
switch channel when they contain equal levels of intracellular variability.
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CONCLUSIONS
Information transduction capacity is limited to the value of channel capacity C ∼ 1bit [3]. One
bit of information transduction capacity means the output can distinguish only between 21 = 2
concentrations of input. An individual communication channel processes a low amount of infor-
mation about the signal intensity, however from the point of view of decision making this amount
is optimal to make binary decisions. To optimise the decision making process a system should
only distinguish between two input signal levels: such as high and low level. Our analysis indi-
cates that many signalling channels achieve this level of channel capacity, however the channel
characteristics depends on the level of systemic fluctuations in order to keep channel capacity at
the level of C = 1 bit. The channel with a switch-like response function and a small threshold
variability has the same channel capacity as the channel with a nearly linear response and large
threshold variability.

One of the main challenges in the application of the IT framework is to simulate channel ca-
pacity of real biochemical networks. Information transduction pathway can be identified for any
biochemical network. By choosing two arbitrary nodes of the network one can assign the input
and the output. The shape of the input-output relationship between these two nodes determines
the information transduction capacity of such a channel. When a node of the network that con-
stitutes the channel is perturbed (by means of chemical inhibition, for example) the input-output
characteristics of the channel changes and so does the capacity as measured by IT. This procedure
is equivalent to performing sensitivity analysis of channel capacity. Nodes whose perturbations do
not translate to significant changes in C do not play an important role in information transduction
across the network. The advantage of indices provided by IT over classic sensitivity analysis is
that the former take into account intracellular fluctuations that affect the channel. However, such
a detailed analysis can be performed only in the presence of high quality mathematical models of
signalling networks. Lack of such models poses an obstacle in current applications of IT.
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