
Łochów, 23rd–27th September 2014

CALCIUM OSCILLATIONS IN A SPATIALLY EXTENDED THREE
COMPARTMENT CELL MODEL

Sławomir Białecki and Bogdan Kaźmierczak
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ABSTRACT
We derive a spatially extended three compartment cell model for evolution of calcium ions concetrations.
To obtain specific form of the fluxes between the compartments, we compare it with the model proposed by
Marhl et al. (2000). We examine numerically the period and shape of oscillations as a function of diffusion
coefficients. We demonstrate a decay of the oscillations at the critical value of diffusion of free calcium ions.

MARHL’S MODEL

Calcium ions Ca2+ are used by eukaryotic cells to carry out various physiological functions.
Fast changes of calcium concentration in cytosol are intermediately connected with muscle con-
traction, hormone secretion, increased ATP production, learning, etc. An elevated calcium con-
centration initiates, e.g. cell differentiation, proliferation, cell cycle or apoptosis.

The three-compartment Marhl’s model [1] (see also [2, 3]) is given by the following nonlinear
ordinary differential equations for concentrations cCyt, cRet, cMit of free calcium ions in the cytosol
(Cyt), endoplasmic reticulum (Ret) and mitochondria (Mit) as well as the concentration of buffered
calcium ions bCyt in cytosol:

dcCyt

dt
= −JRet − JMit − k+cCyt(b0

Cyt − bCyt), (1)

dbCyt

dt
= −k−bCyt + k+cCyt(b0

Cyt − bCyt), (2)

dcRet

dt
=

βRet

ρRet
JRet, (3)

dcMit

dt
=

βMit

ρMit
JMit, (4)

where JRet :=
(
Jpump − Jch − Jleak

)
, JMit := (Jin − Jout) , (5)

Jpump = kpumpcCyt, Jch = kch

c2
Cyt

K2
1 + c2

Cyt

(
cRet − cCyt

)
, Jleak = kleak

(
cRet − cCyt

)
, (6)

Jin = kin

c8
Cyt

K8
2 + c8

Cyt

, Jout =

kout

c2
Cyt

K2
3 + c2

Cyt

+ km

 cMit. (7)
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Here Jpump is active influx of calcium ions Ca2+ into the endoplasmic reticulum provided by
SERCA pumps, Jch and Jleak are passive effluxes out of reticulum compartment, Jin is the mi-
tochondrial active influx and Jout is the passive efflux, b0

Cyt is the concentration of all buffers in
cytosol. Parameters k−, k+, kpump, kch, kleak, kin, kout, km,K1,K2,K3 are kinetic constants. The co-
efficients ργ := Vγ/VCyt, where Vγ is the volume of the γ-compartment, γ ∈ {Ret,Mit}. Their
occurence in Eqs. (3) and (4) reflect the fact that, given the flux of calcium into a compartment,
the speed of the concentration change is inversely proportional to its volume.

The existence of buffering molecules in the reticulum and mitochondria are taken into account
implicitly by assuming that the ratio cγ/(cγ + bγ) =: βγ is constant in time. This is justified by the
the assumption that calcium binding and unbinding process achieves very fast its quasi-stationary
values. Mathematically, it may be achieved by assuming large values of the coefficcients k−γ , k

+
γ

corresponding to the coefficients k−, k+ in the cytosol.
The relatively high value of the Hill exponent in the flux Jin illustrates the fact that mitochondria

start to accumulate calcium ions very fast (possibly in a very fast RAM mode) and secrete it very
slowly back to the cytosol.

A SPATIALLY EXTENDED MODEL

Let the cell be modelled by a bounded domain Ω ⊂ R3. Let Ω = ΩCyt ∪ ΩRet ∪ ΩMit. Let
ΩRet ∩ ΩMit = ∅ and that ∂Ω ∩ (∂ΩRet ∪ ∂ΩMit) = ∅. We assume that inside the compartment
Ωγ, γ ∈ {Cyt, Ret,Mit}, the spatio-temporal dynamics of free calcium concentration cγ and the
concentration of buffered calcium ions bγ, bound by one representative kind of buffering molecules
are governed by the following system of equations:

∂cγ
∂t

= Dcγ∇
2cγ − Eγ(cγ, bγ), (8)

∂bγ
∂t

= Dbγ∇
2bγ + Eγ(cγ, bγ), (9)

where Eγ(cγ, bγ) = −k−γbγ+k+
γ cγ(b0

γ−bγ), b0
γ is total concentration of all buffering molecules, k−γ , k

+
γ

are constants, Dcγ, Dbγ are diffusion coefficients of free and buffered calcium, k+
γ - binding and

k−γ - unbinding kinetic constants in compartment γ. System (8)-(9) is supplemented by the no flux
boundary condition on the boundary of Ω (no flow of calcium between the inside and outside the
cell) and with Robin conditions for free calcium ions concentrations cγ and buffering molecules
concentrations bγ on the boundary Γγ,Cyt of the cytosol with the compartment γ, γ = Ret,Mit:

DcCytnCyt(x) · ∇cCyt(x, t) = Φγ,Cyt(x, t) on Γγ,Cyt, (10)

DbCytnCyt(x) · ∇bCyt(x, t) = 0 on Γγ,Cyt, (11)
where nCyt(x) is a normal vector directed to the outside of the cytosol. Condition (11) means that
buffering molecules do not leak through the cytosolic membranes.

Likewise the fluxes of free calcium ions and buffering molecules with bound calcium on the
boundary of Ωγ, γ = Ret,Mit, with the cytosol are equal to:

Dcγnγ(x) · ∇cγ(x, t) = ΦCyt,γ(x, t) on ΓCyt,γ, (12)

Dbγnγ(x) · ∇bγ(x, t) = 0 on ΓCyt,γ, (13)
where nγ(x) denotes a normal vector directed to the outside of the compartment γ at point x.

From the conservation laws we have: ΦCyt,γ = −Φγ,Cyt for γ = Ret,Mit. We assume, that
Φγ,Cyt(x, t), γ = Ret,Mit, depends analyticaly on the values of concentrations of free calcium
cCyt(x, t) and cγ(x, t) on both sides of the boundary Γγ,Cyt. This assumption is justified by the fact
that the flux depends only on the states of receptors on the separating surfaces (receptors IP3R on
reticular membrane and mitochondrial uniporters).
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Remark It is tacitly assumed that the diffusion coefficients of free buffers and those of the buffer
molecules which bound calcium in each of the compartments are the same. This allows us to take
advantage of the fact that, for the spatially homogeneous initial data, the total concentration of the
buffer molecules is invariant in time and space.

REDUCTION TO A COMPARTMENT MODEL

To obtain specific forms of the fluxes Φγ,Cyt, γ = Ret,Mit, we will reduce the spatially extended
model to a compartmental one and compare it with the Marhl’s model. Integrating (8), (9) over
considered compartment (γ = Ret,Mit), and applying Gauss-Ostrogradski theorem we obtain:

d
∫

Ωγ
cγdVγ

dt
=

∫
Γγ,Cyt

ΦCyt,γ(cCyt, cγ)dS γ,Cyt −

∫
Ωγ

Eγ(cγ, bγ)dVγ, (14)

d
∫

Ωγ
bγdVγ

dt
=

∫
Ωγ

Eγ(cγ, bγ)dVγ. (15)

Adding Eqs. (14) and (15) leads to the conservation law for the total calcium in the γ-compartment:

d
∫

Ωγ
(cγ + bγ)dVγ

dt
=

∫
Γγ,Cyt

ΦCyt,γ(cCyt, cγ)dS γ,Cyt. (16)

Assuming that the diffusion coefficients of free calcium ions are sufficiently large relative to the
dimensions of the compartment (or its connected components, e.g., single mitochondria), we can
neglect the spatial heterogeneity of calcium ions inside all compartments. Consequently, cγ, bγ
depend only on time t (and not depend on spatial coordinate x) and thus equations (14), (15)
become ordinary differential equations of the form:

dcγ
dt

= S γ,CytV−1
γ ΦCyt,γ(cCyt, cγ) − Eγ(cγ, bγ), (17)

dbγ
dt

= Eγ(cγ, bγ). (18)

Assume that the buffers in reticular and mitochondrial compartments are ’fast’ and the total amount
of buffers is sufficiently large (buffers in ’excess’). To be more precise, that:

1: k−γ , k
+
γ are sufficiently large

2: b0
γ >> bγ

It follows - from condition 1 that: Eγ(cγ, bγ) � 0, and from condition 2 that:

−k−γbγ + k+
γ cγ(b0

γ − bγ) � −k−γbγ + k+
γ cγb0

γ

In consequence bγ � Kcγb0
γ, K = k+

γ (k−γ )−1, thus cγ(cγ + bγ)−1 � (1 + K b0
γ)−1, so approximately

cγ
cγ + bγ

=: βγ (19)

With the above assumptions, the ratio of the concentration of free calcium ions inside compart-
ment γ to the total calcium ion concentration (free and bound) can be assumed to be constant.

Thus from (17),(18) we get for the reticular and mitochondrial compartment (γ ∈ {Ret,Mit})

dcγ
dt

=
βγ

ργ

[
S γ,Cyt

VCyt
ΦCyt,γ(cCyt, cγ)

]
, ργ :=

Vγ

VCyt
. (20)
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Such assumptions underly the relative simplicity of the compartment Marhl’s model. However,
while the assumption of homogeneity of the concentration of free and buffered calcium ions is
somehow justified by small dimensions of individual components of non-cytosolic compartments,
the assumption of homogeneity of concentrations in the cytosolic compartment is now more prob-
lematic because of its connectivity (no subdivision into subcompartments, as in the case of the
mitochondrial and reticular component). Integrating (9), (8) over the cytosolic compartment, after
the application of Gauss-Ostrogradski theorem and boundary conditions (10), we obtain, analo-
gously as before:

d
∫

ΩCyt
cCytdVCyt

dt
=

∑
γ=Ret,Mit

∫
Γγ,Cyt

Φγ,Cyt(cCyt, cγ)dS γ,Cyt +

−

∫
ΩCyt

ECyt(cCyt, bCyt)dVCyt, (21)

d
∫

ΩCyt
bCytdVCyt

dt
=

∫
ΩCyt

ECyt(cCyt, bCyt)dVCyt. (22)

Adding these we come to conservation law as in (16):

d
∫

ΩCyt
(cCyt + bCyt)dVCyt

dt
=

∑
γ=Ret,Mit

∫
Γγ,Cyt

Φγ,Cyt(cCyt, cγ)dS γ,Cyt. (23)

Adding equations (16) for γ = Ret, γ = Mit and equation (23) by sides we obtain total conser-
vation law of all calcium ions:

∑
γ=Cyt,Ret,Mit

d
∫

Ωγ
(cγ + bγ)dVγ

dt
= 0.

Because cγ + bγ = cγβ−1
γ , γ = Ret, Mit, thus we get:

d
∫

ΩRet
cRetβ

−1
RetdVRet

dt
+

d
∫

ΩMit
cMitβ

−1
MitdVMit

dt
+

d
∫

ΩCyt
(cCyt + bCyt)dVCyt

dt
= 0.

Hence, for spatially homogeneous concentrations we obtain the conservation law for the total
amount of calcium in the system (see Eq.(1) in [1]):

cRet
ρRet

βRet
+ cMit

ρMit

βMit
+ (cCyt + bCyt) = CcV−1

c , (24)

where Cc is the total amount of calcium ions in the system. On the basis of (20) and (21), the
assumption of spatial homogeneity leads to ordinary differential equations of the form:

dcCyt

dt
=

∑
γ=Ret,Mit

S γ,Cyt

VCyt
Φγ,Cyt(cCyt, cγ) − ECyt(cCyt, bCyt), (25)

dbCyt

dt
= ECyt(cCyt, bCyt), (26)

dcRet

dt
=
βRet

ρRet

[
S Ret,Cyt

VCyt
ΦCyt,Ret(cCyt, cRet)

]
, (27)

dcMit

dt
=
βMit

ρMit

[
S Mit,Cyt

VCyt
ΦCyt,Mit(cCyt, cMit)

]
. (28)
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Comparison of (25)-(28) with (1)-(4) gives:

ΦCyt,Ret(cCyt, cRet) =
VCyt

S Ret,Cyt
JRet, (29)

ΦCyt,Mit(cCyt, cMit) =
VCyt

S Mit,Cyt
JMit, (30)

where JRet and JMit are given by definitions (5), (6) and (7).

FINAL FORM OF THE MODEL

Assuming that in Ωγ, γ = Ret,Mit, cγ(x, t)/(cγ(x, t) + bγ(x, t)) = βγ for (x, t) ∈ Ωγ × [0,∞), we
obtain four reaction-diffusion equations of the form:

∂cCyt

∂t
= DcCyt∇

2cCyt − ECyt(cCyt, bCyt) in ΩCyt, (31)

∂bCyt

∂t
= DbCyt∇

2bCyt + ECyt(cCyt, bCyt) in ΩCyt, (32)

∂cRet

∂t
= DRet∇

2cRet in ΩRet, (33)

∂cMit

∂t
= DMit∇

2cMit in ΩMit. (34)

together with the boundary conditions:

DcCytnCyt(x) · ∇cCyt(x, t) = 0 on ∂Ω,

DcCytnCyt(x) · ∇cCyt(x, t) = −
VCyt

S γ,Cyt
Jγ on Γγ,Cyt, γ = Ret,Mit,

DbCytnCyt(x) · ∇bCyt(x, t) = 0 on Γγ,Cyt, γ = Ret,Mit,

DRetnRet(x) · ∇cRet(x, t) =

(
βRet

ρRet

)
ρRet

VCyt

S Ret,Cyt
JRet, on ΓRet,Cyt,

DMitnMit(x) · ∇cMit(x, t) =

(
βMit

ρMit

)
ρMit

VCyt

S Mit,Cyt
JMit, on ΓMit,Cyt.

(35)

In equations above, JRet and JMit are given by definitions (5), (6) and (7), whereas

DRet = βRetDcRet + (1 − βRet)DbRet, DMit = βMitDcMit + (1 − βMit)DbMit,

are the effective diffusion coefficients of calcium ions in the reticulum and mitochondria. Eqs.
(33) and (34) can be obtained by adding Eqs. (8) and (9) and using approximate identity (19).

Remark The crucial point in the derivation of the above model was the assumption of fast
buffers (in excess) in the reticular and mitochondrial compartment. This assumption is commonly
used and generaly accepted, though the kinetic constants of binding and unbinding of calcium by
buffer molecules are known only very approximately. �

THE RESULTS OF THE NUMERICAL SIMULATIONS
We have carried out our simulations for axially symetric model with the cross-section geometry
as shown in Fig.1. The ratios βRet

ρRet
and βRet

ρRet
were taken to be equal to 0.25 as in [1]. For simplicity

of calculations we assumed additionally that: DcRet = DbRet = DcMit = DbMit = DcCyt. Some of
the results are presented below. The basic observation is that the oscillations disappear for small
values of DcCyt.
Remark In most situations Dbγ < Dcγ (or even Dbγ << Dcγ), nevertheless our simulations give
more information about the spatial distribution of calcium than the compartment models (eg.
Marhl’s model), even for Dbγ = Dcγ in the reticular and mitochondrial compartments.
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Figure 1. Left panel: The cross-section of the axially symetric geometry used in simulations. The
inner disc corresponds to the nucleus. The data acquisition point for plots in Fig.2 is denoted by A.
Right panel: The fine structure of the reticulum-mitochondria motif.

Figure 2. Time courses of free calcium concentration at point A depicted in Fig. 1 for DcCyt

equal respectively 100, 20, 17, 15, 14, 13.5 and DbCyt = 1 (µm2/s). DcRet = DbRet = DcMit =

DbMit = DcCyt . The values of ρRet and ρMit were equal to 0.1313, 0.1356 respectively, whereas
the ratios βRet/ρRet , βMit/ρMit were both taken as 0.25. The geometrical parameters of the model:
VCyt/S Ret,Cyt = 0.3073µm, VCyt/S Mit,Cyt = 1.0940µm . The other parameters of the model were
taken as: kpump = 20s−1, kch = 4200s−1, kin = 300µMs−1, kleak = 0.05s−1, kout = 125s−1,
km = 0.00625s−1, K1 = 5µM, K2 = 0.8µM, K3 = 5µM, k+

Cyt = 0.1µM−1 s−1, k−Cyt = 0.01s−1, b0
Cyt =

120µM. Initial values: cCyt,0 = 0.225µM, cRet,0 = 0.7µM, cMit,0 = 0.35µM, bCyt,0 = 85, 575µM.

CONCLUSIONS
For sufficiently large diffusion coefficients DcCyt (exceeding � 100µm2/s) the model exhibits oscil-
latory solutions very similar in their structure and period to solutions observed in Marhl’s model,
i.e. relatively regular single peak oscillations of period equal to circa 10s. For decreasing val-
ues of DcCyt, this simple structure becomes more complicated. Groups of irregular high peaks
are more and more separated by smaller ones untlil the oscillatory solutions cease to exist at
DcCyt � 13.5µm2/s.
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[2] M. Dyzma, P. Szopa, and B. Kaźmierczak: Membrane Associated Complexes: New Approach to Calcium Dynamics

Modelling, Math. Model. Nat. Phenom. 7 (2012), 167–186.
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