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ABSTRACT
We derive a spatially extended three compartment cell model for evolution of calcium ions concetrations.
To obtain specific form of the fluxes between the compartments, we compare it with the model proposed by
Marhl et al. (2000). We examine numerically the period and shape of oscillations as a function of diffusion
coeflicients. We demonstrate a decay of the oscillations at the critical value of diffusion of free calcium ions.

MARHL’S MODEL

Calcium ions Ca”* are used by eukaryotic cells to carry out various physiological functions.
Fast changes of calcium concentration in cytosol are intermediately connected with muscle con-
traction, hormone secretion, increased ATP production, learning, efc. An elevated calcium con-
centration initiates, e.g. cell differentiation, proliferation, cell cycle or apoptosis.

The three-compartment Marhl’s model [1] (see also [2,3]) is given by the following nonlinear
ordinary differential equations for concentrations ccy, Crer, Cuir Of free calcium ions in the cytosol

(Cyt), endoplasmic reticulum (Ret) and mitochondria (Mit) as well as the concentration of buffered
calcium ions b¢y, in cytosol:

dCCy
7)[ = —JRrer — Imir — k+cCyl‘(b2‘yt = bey), M
dbey, _
7)[ = _k bCyt + k+CC_yt(b2yt - bCyt)7 (2)
dCRel ,BRet
GCRet Trer 3
dt ORer Ret ( )
depyi Buit
dlmir _ Tt 4
dt PMit Mt @
where JRel = (qump - Jch - Jleak) , JMiz = (Jm - Jouz) 5 (5)
c¢
t
Jpump = kpumpCcyts  Jen = kchﬁ <CRe’ - Ccy’) o Jleak = Kieak (CR"’ - CCyl) ’ ©)
1 Cyt
c% . Ty
]i = ki"S—}S’ Jout = (koutz—yz + km) CMit- (7)
K3 +cey, K3 + oy
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Here J,,n, is active influx of calcium ions Ca* into the endoplasmic reticulum provided by
SERCA pumps, J.; and Jj.q are passive effluxes out of reticulum compartment, J;, is the mi-
tochondrial active influx and J,,, is the passive efflux, bgvt is the concentration of all buffers in
cytosol. Parameters k=, k™, kpump, Ken> Kieaks kins Kouts km» K1 ,'Kz, K5 are kinetic constants. The co-
efficients p, := V, /Vcy, where V,, is the volume of the y-compartment, y € {Ret, Mit}. Their
occurence in Egs. (3) and (4) reflect the fact that, given the flux of calcium into a compartment,
the speed of the concentration change is inversely proportional to its volume.

The existence of buffering molecules in the reticulum and mitochondria are taken into account
implicitly by assuming that the ratio ¢, /(c, + by) =: B, is constant in time. This is justified by the
the assumption that calcium binding and unbinding process achieves very fast its quasi-stationary
values. Mathematically, it may be achieved by assuming large values of the coefficcients &,k
corresponding to the coefficients k7, k* in the cytosol.

The relatively high value of the Hill exponent in the flux J;, illustrates the fact that mitochondria
start to accumulate calcium ions very fast (possibly in a very fast RAM mode) and secrete it very
slowly back to the cytosol.

A SPATIALLY EXTENDED MODEL

Let the cell be modelled by a bounded domain Q C R3. LetQ = Qcyr U Qper U Q. Let

ﬁRe, N ﬁMi, = 0 and that 0Q N (0Qge; U 0Qp;) = 0. We assume that inside the compartment
Q,, v € {Cyt, Ret, Mit}, the spatio-temporal dynamics of free calcium concentration ¢, and the
concentration of buffered calcium ions b,, bound by one representative kind of buffering molecules
are governed by the following system of equations:

dcy

o = D V¢, — Ey(cy, by), ®)
ob, B )
E = Dbyv by + Ey(Cy, by), (9)
where E, (c,, b)) = =k b, +k*c,(b0—Db,), b is total concentration of all buffering molecules, &, k¥
Y\FY Py Y=Y y Yy Y Y YUY

are constants, D, Dy, are diffusion coefficients of free and buffered calcium, kf; - binding and
k, - unbinding Kinetic constants in compartment y. System (8)-(9) is supplemented by the no flux
boundary condition on the boundary of Q (no flow of calcium between the inside and outside the
cell) and with Robin conditions for free calcium ions concentrations ¢, and buffering molecules

concentrations b, on the boundary I'y ¢, of the cytosol with the compartment y, y = Ret, Mit:
DcCytnCyr(x) ' VcCyl(x, 1= (Dy,Cyl(x’ f) on Fy,Cyh (10)
Diycymey(x) - Vbey(x,1) =0 on Ty ey, (1)
where nc,,(x) is a normal vector directed to the outside of the cytosol. Condition (11) means that
buffering molecules do not leak through the cytosolic membranes.

Likewise the fluxes of free calcium ions and buffering molecules with bound calcium on the
boundary of Q,, v = Ret, Mit, with the cytosol are equal to:

Deyny(x) - Ve, (x, 1) = Ocyy(x, 1)  onTcy,, 12)

Dpyny(x) - Vby(x,t) =0 onT¢y,, (13)
where n, (x) denotes a normal vector directed to the outside of the compartment y at point x.
From the conservation laws we have: ®cy;, = —®, ¢, for y = Ret, Mit. We assume, that
@, cyi(x,1), v = Ret, Mit, depends analyticaly on the values of concentrations of free calcium
cey(x, 1) and ¢, (x, 1) on both sides of the boundary Iy c,,. This assumption is justified by the fact
that the flux depends only on the states of receptors on the separating surfaces (receptors IP;R on
reticular membrane and mitochondrial uniporters).
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Remark It is tacitly assumed that the diffusion coefficients of free buffers and those of the buffer
molecules which bound calcium in each of the compartments are the same. This allows us to take
advantage of the fact that, for the spatially homogeneous initial data, the total concentration of the
buffer molecules is invariant in time and space.

REDUCTION TO A COMPARTMENT MODEL

To obtain specific forms of the fluxes @, ¢y, ¥ = Ret, Mit, we will reduce the spatially extended
model to a compartmental one and compare it with the Marhl’s model. Integrating (8), (9) over
considered compartment (y = Ret, Mit), and applying Gauss-Ostrogradski theorem we obtain:

d [, c,dV.
Q, Y Y
LA f By (Corns S ey — f E,(c,.b,)dV), (14)
dt rY,Cvt QV
d fgy b,dV,
. A f E,(c, by)dV,. (15)
dt Q,

Adding Egs. (14) and (15) leads to the conservation law for the total calcium in the y-compartment:

d [, (cy +by)dV,

— - f By (Corns ¢S cor (16)

Lyop

Assuming that the diffusion coefficients of free calcium ions are sufficiently large relative to the
dimensions of the compartment (or its connected components, e.g., single mitochondria), we can
neglect the spatial heterogeneity of calcium ions inside all compartments. Consequently, c,, b,
depend only on time t (and not depend on spatial coordinate x) and thus equations (14), (15)
become ordinary differential equations of the form:

dc, .

E = Sy)Cytvy q)Cyr,y(CCyt’ Cy) - Ey(cy, by)’ (17)
db,
E = Ey(Cy, by). (18)

Assume that the buffers in reticular and mitochondrial compartments are *fast’ and the total amount
of buffers is sufficiently large (buffers in ’excess’). To be more precise, that:
1: &, k; are sufficiently large
2: b >> b,
It follows - from condition 1 that: E,(c,, by) = 0, and from condition 2 that:
- 0 ~ ] 0
-k, by + k;rcy(by —-by) = -k, by + k;cyby
In consequence b, = Kcyb?,, K= k;(k;)’l, thus ¢, (c, + b},)’1 =(1+ Kbg),)’l, so approximately

Cy

=: B, (19)

¢y, + b, B
With the above assumptions, the ratio of the concentration of free calcium ions inside compart-
ment 7y to the total calcium ion concentration (free and bound) can be assumed to be constant.

Thus from (17),(18) we get for the reticular and mitochondrial compartment (y € {Ret, Mit})

de, B[S, %
2= ﬂq)Cyt,y(CCyt, cy) s Py = Vy .
Cyt

20
dt Py | Vo 20
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Such assumptions underly the relative simplicity of the compartment Marhl’s model. However,
while the assumption of homogeneity of the concentration of free and buffered calcium ions is
somehow justified by small dimensions of individual components of non-cytosolic compartments,
the assumption of homogeneity of concentrations in the cytosolic compartment is now more prob-
lematic because of its connectivity (no subdivision into subcompartments, as in the case of the
mitochondrial and reticular component). Integrating (9), (8) over the cytosolic compartment, after
the application of Gauss-Ostrogradski theorem and boundary conditions (10), we obtain, analo-
gously as before:

(Dy,Cyt(CCyh Cy)dS y,Cyt T

d LZC)V CCythCyt Z f
T

dt

y=Ret, Mit ~* r.Cyt
- f ECyt(CCyt» bCyt)dVCyt’ (21)
QC}'I
d f% beydVey,
d— = ECyt(CCyts bCyt)dVCyt- (22)
t QC}"I

Adding these we come to conservation law as in (16):

d fo,.,(Ccyi + bey)dVey,
dt

Z f (I)y,Cyt(CCyts Cy)dS v,Cyt- (23)
T

y=Ret, Mit ¥.Cyt
Adding equations (16) for y = Ret, y = Mit and equation (23) by sides we obtain total conser-
vation law of all calcium ions:

d fgy(cy +by)dv, .
y=Cyt,Ret,Mit dt

Because ¢y, + b, = cyﬂ; I y = Ret, Mit, thus we get:

d fﬂker CReiBrudVRer .\ d fQMn CmiBygydVmin . d fQQ,(CCyt +bey)dVey
dt dt dt
Hence, for spatially homogeneous concentrations we obtain the conservation law for the total
amount of calcium in the system (see Eq.(1) in [1]):

CRer ol + a2 4 (ceyn + bey) = CeV (24)

BRet Bt

where C. is the total amount of calcium ions in the system. On the basis of (20) and (21), the
assumption of spatial homogeneity leads to ordinary differential equations of the form:

dCCy[ Sycy,
= : (D}/,Cyt(cCyt, Cy) - ECyI(CCyts bCyt)s (25)
dt y=lgt; ‘wir VOt
dbc,,
d Y = ECyt(CCyta bCyl), (26)
t
dCRet BRet N Ret,Cyt
= — @ e t> CRet) | » 27
u pret | Vor Cyt.Ret(CCyts CRet) 27
deyiie  Puie | S mitcy
— = — i > CMit) | - 28
dt Ot cht Cyt,M t(CC)t Cumir) 28)
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Comparison of (25)-(28) with (1)-(4) gives:

VC 'yt

(DCyt,Ret(cCyla CRet) = = JRer> (29)
Ret,Cyt
VC 'yt

Dy mic(Coy> i) = ——— I mirs (30)
Mit,Cyt

where Jg.; and Jy;; are given by definitions (5), (6) and (7).

FINAL FORM OF THE MODEL

Assuming that in Q,, ¥y = Ret, Mit, ¢, (x,1)/(c,(x,1) + by(x,1)) = B, for (x,1) € Q, X [0, 00), we
obtain four reaction-diffusion equations of the form:

0 CCyt

e DecyiVZcey — Ecylceysbey) — in Qcy, (31
Obcy, ) .
pral Dy Vobeyt + Ecyi(coy, bey)  1n Qcyy, (32)
% = Dre/VCRet N Qers (33)
% = DyieVemi  in Qi (34)
together with the boundary conditions:
Dccymey(x) - Veey(x,1) = 0 on 0Q,
Decymey(x) - Veey(x, 1) = — S‘;Cé; T, on T,y y = Ret, Mit,
Dypcymey(x) - Vbey(x, 1) = 0 onI'y ey, v = Ret, Mit, (35)
Dgemiger(x) - Vega(x, 1) = (ﬁ Re’)pke, IR
PRet S Ret,Cyt
Duyimpgi(x) - Veyi(x, 1) = ('BM” pMitﬂJMih on I'yircyr.
PMit S Mir.cyt

In equations above, Jg., and Jy; are given by definitions (5), (6) and (7), whereas
Dget = BretDerer + (1 = Bret)Dorers  Dumtir = BuisDemic + (1 = Batie) Doasirs

are the effective diffusion coefficients of calcium ions in the reticulum and mitochondria. Eqgs.
(33) and (34) can be obtained by adding Egs. (8) and (9) and using approximate identity (19).

Remark The crucial point in the derivation of the above model was the assumption of fast
buffers (in excess) in the reticular and mitochondrial compartment. This assumption is commonly
used and generaly accepted, though the kinetic constants of binding and unbinding of calcium by
buffer molecules are known only very approximately. O

THE RESULTS OF THE NUMERICAL SIMULATIONS

We have carried out our simulations for axially symetric model with the cross-section geometry
as shown in Fig.1. The ratios ﬁ ke and ’2 R4 were taken to be equal to 0.25 as in [1]. For simplicity
of calculations we assumed addltlonally that Dcget = Dpger = Depir = Dppir = Decyr. Some of
the results are presented below. The basic observation is that the oscillations disappear for small
values of Dccy;.

Remark In most situations Dy, < D, (or even Dy, << D), nevertheless our simulations give
more information about the spatial distribution of calcium than the compartment models (eg.
Marhl’s model), even for Dy, = D, in the reticular and mitochondrial compartments.
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Figure 1. Left panel: The cross-section of the axially symetric geometry used in simulations. The
inner disc corresponds to the nucleus. The data acquisition point for plots in Fig.2 is denoted by A.
Right panel: The fine structure of the reticulum-mitochondria motif.
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Figure 2. Time courses of free calcium concentration at point A depicted in Fig. 1 for Decy
equal respectively 100, 20, 17, 15, 14, 13.5 and Dycy = 1 (ymz/s). Dcget = Dprer = Depir =
Dppric = Decyr. The values of pres and pyi; were equal to 0.1313, 0.1356 respectively, whereas
the ratios Bret/PRrets Bmit/ Pmic Were both taken as 0.25. The geometrical parameters of the model:
Veyi/S Rercye = 0.3073um, Vey /S mircy: = 1.0940um . The other parameters of the model were
taken as: kpump = 20571, kep = 4200571, ki = 300uMs™, Keax = 0.0557!, ko = 125571,
ki = 0.006255™", Ky = SuM, K> = 0.8uM, K3 = SuM, k¢, = 0.1uM ™" 57" ke, = 0.01s7!, b0, =
120pM. Initial values: ccyro = 0.225uM, crero = 0.7uM, cpriro = 0.35uM, beyo = 85,575uM.

CONCLUSIONS

For sufficiently large diffusion coefficients D¢, (exceeding = 100um? / s) the model exhibits oscil-
latory solutions very similar in their structure and period to solutions observed in Marhl’s model,
i.e. relatively regular single peak oscillations of period equal to circa 10s. For decreasing val-
ues of D.cy,, this simple structure becomes more complicated. Groups of irregular high peaks
are more and more separated by smaller ones untlil the oscillatory solutions cease to exist at
Decyr = 13.5um?/s.
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