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ABSTRACT

This paper presents how differences of Young’s modulus in adjacent finite elements typical for organic ma-
terials such as bone tissue, influence stress calculating. Emphasizing high computational cost of variable
Young’s modulus in parts of the model, where the number of finite elements has been raised, the authors
wants to prove that new model of finite element which has variable Young’s modulus in its volume needs
to be created. The article contains a description of the computer simulation and the interpretation of their
result.

INTRODUCTION

Finite element method (FEM) allows precise calculations ofthe strength of objects of known
and regular materials properties. Typical FEM calculations in mechanical engineering describe
models made of materials of uniform stiffness. Stress concentration revealed on the border be-
tween the uniform areas of different stiffness is a real and well–known phenomenon. Repeatability
and uniformity of properties such as Young’s modulus, however, do not apply to organic materials,
such as wood or bone.

Image of local tissue stiffness variation in one bone area isavailable through Computer Tomog-
raphy (CT). In the biomechanics literature, many publications on testing and verification FEM
models created from CT images are available [1,2], while in some other publications their authors
aim to draw medical conclusions from such calculations [3].The authors of [1,2] experimentally
confirm the quality of bone tissue FEM models that has been built based on the relation between
Young’s modulus and radiographic density (expressed in Hausfield’s units) using an intermediate
relation of mineral densityρ and radiologicalHU
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Instead of using Eq. (1) sometimes CT technique called quantitative computed tomography
QCT is used.

This paper presents inaccurate results in currently used meshing algorithm for FEM of bone
tissue and proposes a solution to this problem. The simulations are a part of a doctoral thesis
undertaken at the Faculty of Mechanical Engineering at Gdańsk University of Technology.
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VARIATION OF YOUNG’S MODULUS IN THE NEIGHBORING FINITE ELEM ENTS
OF BONE TISSUE MODEL

The image of a CT scan has a limited resolution like an image ofdigital photography. An
elementary part of such image is called a vortex. Construction of the FEM model of a bone from
CT images in such a way that one vortex is represented by one finite element is the best way to use
data obtained from CT. Using smaller number of finite elements neglects some part of information
of the variable stiffness of the material within the bone. The use of a larger number of elements
requires interpolation of material stiffness value, whichdecreases the quality of the information,
and increases the size of the FEM problem.

In Fig. 1 we can see the steps of such a process. Tomographic cross-section of the femur with
applied tomographic density scale (Fig. 1(b)) at the level marked in Fig. 1(a) has been transformed
into the FEM model (Fig. 1(d)) with assigning Young’s modulus according to (1) and (2) to each of
the elements (rating effort tissue is generally made on the basis of von Misses stress [4]). Radiation
density distribution on femur section (indicated in Fig. 1(b) byr–axis) is shown in Fig. 1(c). This
is an usual distribution (with the maximum in the middle of the wall thickness) and it is continuous,
due to interpolation of measurement data.

The calculation of stress distribution (Fig. 1(d)) has a clearly discontinuous character. Very
significant stress gradients appear on finite elements’ boundaries that can only be explained by the
imperfection of the calculation method. This imperfectionin FEM is ignored in publications of
bone modeling and will be examined later in the work.

EFFECT OF VARIATION OF YOUNG’S MODULUS IN THE NEIGHBORING FI NITE
ELEMENTS

For the needs of the simulation, a virtual sample size 50 x 50 mm was created, built of 25
CT vortices (in a grid of 5 x 5). The sample is supported on the lower edge. The upper edge is
displaced byuy (Fig. 2) in such a way that the compressive stress amounts to 100 MPa. Continu-
ous and smooth (linear) distribution of material properties (Young’s modulus) was applied in the
calculated area to make it easy to detect any anomalies in thecalculated stress distribution
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According to calculations illustrated by Fig. 1 and explained below this figure, each of vortices
was converted into the finite element and received its own Young’s modulus. Modulus’ distribution
defined by

E(x, y) = ax+ by + c . (4)

Divided into vortices coefficientsa, b andc were chosen so that in the sample’s corners’ (de-
scribed by the coordinates according to Fig. 2) Young’s modulus the following valuesE(0, 0) =
1[Pa], E(0, 50) = E(50, 0) = Es = 2.1 × 105[MPa] andE(50, 50) = 2 × Es. The assumption
of constant value of Young’s modulus in the element’s area caused that the spatial distribution of
the module is in the form of a stepped pyramid (Fig. 3).

Two subsequent simulations were carried out for meshed the sample with the use of ANSYS
program. The first simulation was done in accordance to the principle described above: one finite
element⇒ one vortex. In the second simulation, finite element mesh wasrefined so that each vor-
tex was represented by 400 finite elements (20× 20), but the distribution of the Young’s modulus
remained unchanged (i.e. according to Fig. 3). The results of both simulations are presented in
Fig. 4.

In the results of the first simulation (Fig. 4(a)) one can observe that stress contour boundaries
coincide with the boundaries of finite elements. They are sharp and irregular, which is impossible
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Figure 1. (a) Diagram of the femur load. (b) Femur tomographyimage with radiological
density scale applied. (c) Radiological density distribution along the marked radius. (d)
Equivalent stresses by von Misses calculated FEM with finiteelements based on vortexes
Fig. (b). Presented results are authors’ own research.

Figure 2. Meshed virtual sample and its displacement.

for the assumed distribution of Young’s modulus. A slight improvement of the stress concentration
can be observed in the results of the second simulation (Fig.4(b))—when meshing was finer. This
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Figure 3. Graph of the Young’s modulusE [MPa] in the 25 finite elements coordinates.

Figure 4. Interpolated nodal values of calculated compressive stressσy [MPa]: (a) sam-
ple with an aspect ratio 1 vortex = 1 finite element, (b) samplewith an aspect ratio
1 vortex =20× 20 = 400 finite elements.

procedure however resulted in a significant increase of the calculations’ time. The contour lines
clearly coincide with the boundaries of finite elements, butthey are smoother, which gives the
impression of smoother transition between successive stress values. The modeled phenomenon
has a completely continuous spatial distribution, so the apparent lack of continuity in the results
seems to be an error of the used method, because distributionof the elements in the studied area is
an artificial meshing, in fact there is no boundaries, so we recognize as an error if any boundaries
appears in calculations results).

THE EFFECT OF MESH REFINEMENT WITHOUT CHANGE OF YOUNG
MODULUS DISTRIBUTION

The examples described in the previous paragraph show that an increase of the number of
elements, while the distribution of Young’s modulus remained unchanged improved the continuity
of the results only slightly. In subsequent numerical experiments, a fine mesh of 100× 100 =
10 000 elements was used. An individual Young’s modulus value is assigned to each of these
elements according to the equation (4)—Fig. 5.
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Figure 5. Graph of Young’s modulus as a function of the coordinates of 10 000 finite elements.

As expected, the change in the method assigning values of Young’s modulus to the finite el-
ements caused a significant change in the obtained results (Fig. 6). Contour lines are no longer
closely associated with the vortices boundaries; they are significantly smoother than either of
the previous results. Computational time in this case was similar to the second simulation case
(Fig. 4(b)).

Figure 6. Calculated compressive stressσy [MPa] in the sample division on 10 000 finite
elements, each with its individual Young’s modulus value.

CONCLUSIONS

The use of mesh density usually described in the biomechanics literature leads to large disconti-
nuity of calculated stresses. Refining the mesh and maintaining the spatial distribution of Young’s
modulus (as derived from CT density of radiation) does not make a significant improvement, but
significantly increases the computational time.

Clear improvement of the results can be obtained by using finemesh division and performing
interpolation of Young’s modulus and assigning its individual value to each finite element. Unfor-
tunately, this approach increases the computational time beyond the level acceptable in medical
diagnostics. The solution for future, according to the authors is to develop a new type of finite
element, in which material stiffness would not be constant variation in its material stiffness. For
example this can be done by assigning a different value of Young’s modulus to each node of the
finite element and perform interpolation of the value withinthe element volume. Such an approach
has not been proposed before and will be the subject of authors’ future research.
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