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ABSTRACT
This paper presents how differences of Young's modulus jacaaht finite elements typical for organic ma-
terials such as bone tissue, influence stress calculatingphB&sizing high computational cost of variable
Young’s modulus in parts of the model, where the number ofdirlements has been raised, the authors
wants to prove that new model of finite element which has B#i&oung’s modulus in its volume needs

to be created. The article contains a description of the ctengsimulation and the interpretation of their
result.

INTRODUCTION

Finite element method (FEM) allows precise calculationthefstrength of objects of known
and regular materials properties. Typical FEM calculaionmechanical engineering describe
models made of materials of uniform stiffness. Stress catnaton revealed on the border be-
tween the uniform areas of different stiffness is a real aeliitknown phenomenon. Repeatability
and uniformity of properties such as Young’s modulus, havedo not apply to organic materials,
such as wood or bone.

Image of local tissue stiffness variation in one bone arasadable through Computer Tomog-
raphy (CT). In the biomechanics literature, many publamagion testing and verification FEM
models created from CT images are available [1, 2], whil@me other publications their authors
aim to draw medical conclusions from such calculations T3le authors of [1, 2] experimentally
confirm the quality of bone tissue FEM models that has bednlmsed on the relation between
Young’s modulus and radiographic density (expressed irsfiield’s units) using an intermediate
relation of mineral density and radiologicalH U

{i} _ 0.6311{0%0 6.7 7 1)
E[MPa] = 1904p" % . )

Instead of using Eqg. (1) sometimes CT technique called dfatimé computed tomography

QCT is used.

This paper presents inaccurate results in currently useshimg algorithm for FEM of bone
tissue and proposes a solution to this problem. The sinomgitare a part of a doctoral thesis
undertaken at the Faculty of Mechanical Engineering atSki&niversity of Technology.
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VARIATION OF YOUNG'S MODULUS IN THE NEIGHBORING FINITE ELEM  ENTS
OF BONE TISSUE MODEL

The image of a CT scan has a limited resolution like an imagdigifal photography. An
elementary part of such image is called a vortex. Constrnaif the FEM model of a bone from
CT images in such a way that one vortex is represented by dteediement is the best way to use
data obtained from CT. Using smaller number of finite elemerglects some part of information
of the variable stiffness of the material within the boneeTise of a larger number of elements
requires interpolation of material stiffness value, whitdtreases the quality of the information,
and increases the size of the FEM problem.

In Fig. 1 we can see the steps of such a process. Tomograpsg-section of the femur with
applied tomographic density scale (Fig. 1(b)) at the levalked in Fig. 1(a) has been transformed
into the FEM model (Fig. 1(d)) with assigning Young's modaiiccording to (1) and (2) to each of
the elements (rating effort tissue is generally made onaséstof von Misses stress [4]). Radiation
density distribution on femur section (indicated in Figo)Ylify r—axis) is shown in Fig. 1(c). This
is an usual distribution (with the maximum in the middle & thall thickness) and it is continuous,
due to interpolation of measurement data.

The calculation of stress distribution (Fig. 1(d)) has aadlediscontinuous character. Very
significant stress gradients appear on finite elements’ danigs that can only be explained by the
imperfection of the calculation method. This imperfectiorFEM is ignored in publications of
bone modeling and will be examined later in the work.

EFFECT OF VARIATION OF YOUNG’'S MODULUS IN THE NEIGHBORING FI  NITE
ELEMENTS

For the needs of the simulation, a virtual sample size 50 x §0was created, built of 25
CT vortices (in a grid of 5 x 5). The sample is supported on theet edge. The upper edge is
displaced by, (Fig. 2) in such a way that the compressive stress amounBd®/Pa. Continu-
ous and smooth (linear) distribution of material propear{féoung’s modulus) was applied in the
calculated area to make it easy to detect any anomalies tethelated stress distribution

__ho 50 x 100 [mm x MPa

E ~ 2.1x10°

According to calculations illustrated by Fig. 1 and expéairbelow this figure, each of vortices
was converted into the finite element and received its owmygamodulus. Modulus’ distribution
defined by

Uy = — = NP ] = 0.024[mm] . 3)

E(z,y) =azx+by+c. (4)

Divided into vortices coefficients, b andc were chosen so that in the sample’s corners’ (de-
scribed by the coordinates according to Fig. 2) Young’s nheglthe following value€(0,0) =
1[Pal, E(0,50) = E(50,0) = Es; = 2.1 x 10°[MPa] and E(50,50) = 2 x E5. The assumption
of constant value of Young’s modulus in the element’s aresed that the spatial distribution of
the module is in the form of a stepped pyramid (Fig. 3).

Two subsequent simulations were carried out for meshedaimple with the use of ANSYS
program. The first simulation was done in accordance to tineipte described above: one finite
element=- one vortex. In the second simulation, finite element meshrefased so that each vor-
tex was represented by 400 finite elements%280), but the distribution of the Young’s modulus
remained unchangedd. according to Fig. 3). The results of both simulations ares@néed in
Fig. 4.

In the results of the first simulation (Fig. 4(a)) one can obs¢hat stress contour boundaries
coincide with the boundaries of finite elements. They aregshad irregular, which is impossible
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Figure 1. (a) Diagram of the femur load. (b) Femur tomograpigge with radiological
density scale applied. (c) Radiological density distiitnuialong the marked radius. (d)
Equivalent stresses by von Misses calculated FEM with fedgenents based on vortexes
Fig. (b). Presented results are authors’ own research.
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Figure 2. Meshed virtual sample and its displacement.

for the assumed distribution of Young’s modulus. A slighpimvement of the stress concentration
can be observed in the results of the second simulation4fj)—when meshing was finer. This
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Figure 3. Graph of the Young's modulis[MPa] in the 25 finite elements coordinates.
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Figure 4. Interpolated nodal values of calculated compresdressr, [MPa]: (a) sam-
ple with an aspect ratio 1 vortex = 1 finite element, (b) samplh an aspect ratio
1 vortex =20 x 20 = 400 finite elements.

procedure however resulted in a significant increase of dfmutations’ time. The contour lines
clearly coincide with the boundaries of finite elements, thety are smoother, which gives the
impression of smoother transition between successivesstra@lues. The modeled phenomenon
has a completely continuous spatial distribution, so thEaegnt lack of continuity in the results
seems to be an error of the used method, because distrilmftioa elements in the studied area is
an artificial meshing, in fact there is no boundaries, so wegaize as an error if any boundaries
appears in calculations results).

THE EFFECT OF MESH REFINEMENT WITHOUT CHANGE OF YOUNG
MODULUS DISTRIBUTION

The examples described in the previous paragraph show thaiceease of the number of
elements, while the distribution of Young’s modulus renegininchanged improved the continuity
of the results only slightly. In subsequent numerical ekpents, a fine mesh of 10Q 100 =
10 000 elements was used. An individual Young's modulusev@éuassigned to each of these
elements according to the equation (4)—Fig. 5.
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Figure 5. Graph of Young’s modulus as a function of the cawtiis of 10 000 finite elements.

As expected, the change in the method assigning values afg¥@modulus to the finite el-
ements caused a significant change in the obtained resigts6) Contour lines are no longer
closely associated with the vortices boundaries; they igmifcantly smoother than either of
the previous results. Computational time in this case wadlagi to the second simulation case

(Fig. 4(b)).

[ ]

Figure 6. Calculated compressive streggMPa] in the sample division on 10 000 finite
elements, each with its individual Young’s modulus value.

CONCLUSIONS

The use of mesh density usually described in the biomechétdature leads to large disconti-
nuity of calculated stresses. Refining the mesh and maintgihe spatial distribution of Young's
modulus (as derived from CT density of radiation) does ndteresignificant improvement, but
significantly increases the computational time.

Clear improvement of the results can be obtained by usingifieeh division and performing
interpolation of Young’s modulus and assigning its indiadivalue to each finite element. Unfor-
tunately, this approach increases the computational tieyerd the level acceptable in medical
diagnostics. The solution for future, according to the atghs to develop a new type of finite
element, in which material stiffness would not be constamitation in its material stiffness. For
example this can be done by assigning a different value ohiy@umodulus to each node of the
finite element and perform interpolation of the value witthia element volume. Such an approach
has not been proposed before and will be the subject of asithuure research.
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